Skip to main content
Top

Open Access 03-02-2025 | Arthritis | RESEARCH

Moxibustion Alleviates Inflammation via SIRT5-mediated Post-translational Modification and Macrophage Polarization

Authors: Chuan-yi Zuo, Cheng-shun Zhang, Han-xiao Zhang, Chun-yan Gou, Hong Lei, Feng-wei Tian, Zhu-xing Wang, Hai-yan Yin, Shu-guang Yu

Published in: Inflammation

Login to get access

Abstract

Macrophage polarisation is influenced by Sirtuin5 (SIRT5), which is crucial for regulating anti-inflammatory processes. Moxibustion, a traditional Chinese medicine therapy, exerts anti-inflammatory effects by altering the succinate/α-ketoglutarate (α-KG) ratio, an indicator of the M1 to M2 macrophage shift. Glutamate dehydrogenase 1 (GLUD1), a key enzyme involved in α-KG production, is desuccinylated by SIRT5. Currently, the potential influence of moxibustion on SIRT5-GLUD1-α-KG-mediated macrophage polarization in inflammatory diseases remains unexplored. C57BL/6 J and Sirt5 knockout mice were used as complete Freund's adjuvant (CFA)-induced adjuvant arthritis models. Moxibustion and acupoint injections of MC3482 were administered. Paw capacity asssays and ELISA were performed to quantify inflammatory effects and the expression of succinate, and α-KG expressions. Flow cytometry (FCM) and immunofluorescence were used to assesss the expression of M1- and M2-like macrophages. LC–MS/MS-based proteomic analysis was performed, and GLUD1 was identified desuccinylated protein associated with SIRT5. Western blotting and immunoprecipitation (IP) were used to detect SIRT5, GLUD1, and succinylated GLUD1expressions. Moxibustion and the SIRT5-mediated desuccinylation inhibitor MC3482 decreased inflammation by increasing the number of M2 macrophages and reducing the number of M1 macrophage in the CFA model. The potential mechanism may be related to the effects of moxibustion and SIRT5 inhibition, which inverted succinate and α-KG levels in the CFA group, resulting in low succinate, high α-KG, and increased GLUD1 succinylation after treatment. These findings suggest that the anti-inflammatory effects moxibustion are related to the impact of macrophage conversion after SIRT5-mediated post-translational modification.
Literature
1.
go back to reference Furman, D., J. Campisi, E. Verdin, P. Carrera-Bastos, S. Targ, C. Franceschi, L. Ferrucci, D. Gilroy, A. Fasano, G. Miller, et al. 2019. Chronic inflammation in the etiology of disease across the life span. Nature Medicine 25 (12): 1822–1832.PubMedCrossRefPubMedCentral Furman, D., J. Campisi, E. Verdin, P. Carrera-Bastos, S. Targ, C. Franceschi, L. Ferrucci, D. Gilroy, A. Fasano, G. Miller, et al. 2019. Chronic inflammation in the etiology of disease across the life span. Nature Medicine 25 (12): 1822–1832.PubMedCrossRefPubMedCentral
2.
go back to reference McGettrick, A., and L. O’Neill. 2020. The role of HIF in immunity and inflammation. Cell Metabolism 32 (4): 524–536.PubMedCrossRef McGettrick, A., and L. O’Neill. 2020. The role of HIF in immunity and inflammation. Cell Metabolism 32 (4): 524–536.PubMedCrossRef
3.
go back to reference Huangan, W., W. Zhijun, L. Huirong, Z. Jianbin, Y. Shuguang, C. Xiaorong, M. Xiaopeng, S. Xueyong, W. Xiaomei, W. Luyi, et al. 2016. Analgesic and Anti-Inflammatory Effects of Moxibustion on Immune-Related Disease. World Chinese Medicine (Shi jie zhong yi yao) 11: 2505–2514+2520. Huangan, W., W. Zhijun, L. Huirong, Z. Jianbin, Y. Shuguang, C. Xiaorong, M. Xiaopeng, S. Xueyong, W. Xiaomei, W. Luyi, et al. 2016. Analgesic and Anti-Inflammatory Effects of Moxibustion on Immune-Related Disease. World Chinese Medicine (Shi jie zhong yi yao) 11: 2505–2514+2520.
4.
go back to reference Li, J., X. Hu, F. Liang, J. Liu, H. Zhou, J. Liu, H. Wang, and H. Tang. 2019. Therapeutic effects of moxibustion simultaneously targeting Nrf2 and NF-κB in diabetic peripheral neuropathy. Applied Biochemistry and Biotechnology 189 (4): 1167–1182.PubMedCrossRefPubMedCentral Li, J., X. Hu, F. Liang, J. Liu, H. Zhou, J. Liu, H. Wang, and H. Tang. 2019. Therapeutic effects of moxibustion simultaneously targeting Nrf2 and NF-κB in diabetic peripheral neuropathy. Applied Biochemistry and Biotechnology 189 (4): 1167–1182.PubMedCrossRefPubMedCentral
5.
go back to reference Yu, K., Z. Xiaoning, Y. Qingquan, H. Wei, W. Xiaoyu, W. Hongye, S. Yangshuai, and J. Xianghong. 2019. Moxibustion promoted transformation of inflammatory phase to facilitate wound healing in rats with full-thickness cutaneous wounds. Acupuncture Research 44: 352–357.PubMed Yu, K., Z. Xiaoning, Y. Qingquan, H. Wei, W. Xiaoyu, W. Hongye, S. Yangshuai, and J. Xianghong. 2019. Moxibustion promoted transformation of inflammatory phase to facilitate wound healing in rats with full-thickness cutaneous wounds. Acupuncture Research 44: 352–357.PubMed
6.
go back to reference Komatsu, N., and H. Takayanagi. 2022. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nature Reviews Rheumatology 18 (7): 415–429.PubMedCrossRef Komatsu, N., and H. Takayanagi. 2022. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nature Reviews Rheumatology 18 (7): 415–429.PubMedCrossRef
7.
go back to reference Sun, J., X. Xu, and L. Jin. 2022. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds. Frontiers in Immunology 13: 880286.PubMedCrossRefPubMedCentral Sun, J., X. Xu, and L. Jin. 2022. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds. Frontiers in Immunology 13: 880286.PubMedCrossRefPubMedCentral
8.
go back to reference Dong, T., X. Chen, H. Xu, Y. Song, H. Wang, Y. Gao, J. Wang, R. Du, H. Lou, and T. Dong. 2022. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacology & Therapeutics 239: 108208.CrossRef Dong, T., X. Chen, H. Xu, Y. Song, H. Wang, Y. Gao, J. Wang, R. Du, H. Lou, and T. Dong. 2022. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacology & Therapeutics 239: 108208.CrossRef
9.
go back to reference Zhao, D., C. Xue, Y. Yang, J. Li, X. Wang, Y. Chen, S. Zhang, Y. Chen, Y. Duan, X. Yang, et al. 2022. Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomedicine & Pharmacotherapy Biomedecine & Pharmacotherapie 153: 113444.CrossRef Zhao, D., C. Xue, Y. Yang, J. Li, X. Wang, Y. Chen, S. Zhang, Y. Chen, Y. Duan, X. Yang, et al. 2022. Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomedicine & Pharmacotherapy Biomedecine & Pharmacotherapie 153: 113444.CrossRef
10.
go back to reference Rath, M., I. Müller, P. Kropf, E. Closs, and M. Munder. 2014. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Frontiers in Immunology 5: 532.PubMedCrossRefPubMedCentral Rath, M., I. Müller, P. Kropf, E. Closs, and M. Munder. 2014. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Frontiers in Immunology 5: 532.PubMedCrossRefPubMedCentral
11.
go back to reference Zhou, W., G. Hu, J. He, T. Wang, Y. Zuo, Y. Cao, Q. Zheng, J. Tu, J. Ma, R. Cai, et al. 2022. SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Reports 39 (2): 110660.PubMedCrossRef Zhou, W., G. Hu, J. He, T. Wang, Y. Zuo, Y. Cao, Q. Zheng, J. Tu, J. Ma, R. Cai, et al. 2022. SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Reports 39 (2): 110660.PubMedCrossRef
12.
go back to reference Abhishek, K., Jha, Stanley Ching-Cheng, Huang, Alexey, Sergushichev, Vicky, Lampropoulou, Yulia, Ivanova. 2015. Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules that Regulate Macrophage Polarization. Immunity. Abhishek, K., Jha, Stanley Ching-Cheng, Huang, Alexey, Sergushichev, Vicky, Lampropoulou, Yulia, Ivanova. 2015. Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules that Regulate Macrophage Polarization. Immunity.
13.
go back to reference Harber, K., K. de Goede, S. Verberk, E. Meinster, H. de Vries, M. van Weeghel, M. de Winther, and J. Van den Bossche. 2020. Succinate Is an Inflammation-Induced Immunoregulatory Metabolite in Macrophages. Metabolites 10 (9): 372.PubMedCrossRefPubMedCentral Harber, K., K. de Goede, S. Verberk, E. Meinster, H. de Vries, M. van Weeghel, M. de Winther, and J. Van den Bossche. 2020. Succinate Is an Inflammation-Induced Immunoregulatory Metabolite in Macrophages. Metabolites 10 (9): 372.PubMedCrossRefPubMedCentral
14.
go back to reference Tannahill, G. M., A. M. Curtis, J. Adamik, E. M. Palsson-Mcdermott, A. F. Mcgettrick, G. Goel, C. Frezza, N. J. Bernard, B. Kelly, and N. H. Foley. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496 (7444): 238.PubMedCrossRefPubMedCentral Tannahill, G. M., A. M. Curtis, J. Adamik, E. M. Palsson-Mcdermott, A. F. Mcgettrick, G. Goel, C. Frezza, N. J. Bernard, B. Kelly, and N. H. Foley. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496 (7444): 238.PubMedCrossRefPubMedCentral
15.
go back to reference Chen, X., B. Sunkel, M. Wang, S. Kang, T. Wang, J. Gnanaprakasam, L. Liu, T. Cassel, D. Scott, A. Muñoz-Cabello, et al. 2022. Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation. Science Immunology 7 (70): eabm8161.PubMedCrossRefPubMedCentral Chen, X., B. Sunkel, M. Wang, S. Kang, T. Wang, J. Gnanaprakasam, L. Liu, T. Cassel, D. Scott, A. Muñoz-Cabello, et al. 2022. Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation. Science Immunology 7 (70): eabm8161.PubMedCrossRefPubMedCentral
16.
go back to reference Hensley, C., A. Wasti, and R. DeBerardinis. 2013. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. The Journal of clinical investigation 123 (9): 3678–3684.PubMedCrossRefPubMedCentral Hensley, C., A. Wasti, and R. DeBerardinis. 2013. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. The Journal of clinical investigation 123 (9): 3678–3684.PubMedCrossRefPubMedCentral
17.
go back to reference Fan, M., H. Shi, H. Yao, W. Wang, Y. Zhang, C. Jiang, and R. Lin. 2022. Glutamate regulates gliosis of BMSCs to promote ENS regeneration through α-KG and H3K9/H3K27 demethylation. Stem Cell Research & Therapy 13 (1): 1–17.CrossRef Fan, M., H. Shi, H. Yao, W. Wang, Y. Zhang, C. Jiang, and R. Lin. 2022. Glutamate regulates gliosis of BMSCs to promote ENS regeneration through α-KG and H3K9/H3K27 demethylation. Stem Cell Research & Therapy 13 (1): 1–17.CrossRef
18.
go back to reference Shang, M., F. Cappellesso, R. Amorim, J. Serneels, and M. Mazzone. 2020. Macrophage-derived glutamine boosts satellite cells and muscle regeneration. Nature 587 (7835): 1–6.CrossRef Shang, M., F. Cappellesso, R. Amorim, J. Serneels, and M. Mazzone. 2020. Macrophage-derived glutamine boosts satellite cells and muscle regeneration. Nature 587 (7835): 1–6.CrossRef
19.
go back to reference Zhu, Y., X. Chen, Y. Lu, L. Xia, S. Fan, Q. Huang, X. Liu, and X. Peng. 2022. Glutamine mitigates murine burn sepsis by supporting macrophage M2 polarization through repressing the SIRT5-mediated desuccinylation of pyruvate dehydrogenase. Burns & Trauma 10: tkac041.CrossRef Zhu, Y., X. Chen, Y. Lu, L. Xia, S. Fan, Q. Huang, X. Liu, and X. Peng. 2022. Glutamine mitigates murine burn sepsis by supporting macrophage M2 polarization through repressing the SIRT5-mediated desuccinylation of pyruvate dehydrogenase. Burns & Trauma 10: tkac041.CrossRef
20.
go back to reference Yao, P., T. Chen, P. Jiang, L. Li, and W. Du. 2022. Functional skewing of TRIM21-SIRT5 interplay dictates IL-1β production in DSS-induced colitis. EMBO Reports 23 (9): e54391.PubMedCrossRefPubMedCentral Yao, P., T. Chen, P. Jiang, L. Li, and W. Du. 2022. Functional skewing of TRIM21-SIRT5 interplay dictates IL-1β production in DSS-induced colitis. EMBO Reports 23 (9): e54391.PubMedCrossRefPubMedCentral
21.
go back to reference Wang, Y., H. Chen, and X. Zha. 2022. Overview of SIRT5 as a potential therapeutic target: Structure, function and inhibitors. European Journal of Medicinal Chemistry 236: 114363.PubMedCrossRef Wang, Y., H. Chen, and X. Zha. 2022. Overview of SIRT5 as a potential therapeutic target: Structure, function and inhibitors. European Journal of Medicinal Chemistry 236: 114363.PubMedCrossRef
22.
go back to reference Wang, F., K. Wang, W. Xu, S. Zhao, D. Ye, Y. Wang, Y. Xu, L. Zhou, Y. Chu, C. Zhang, et al. 2017. SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Reports 19 (11): 2331–2344.PubMedCrossRef Wang, F., K. Wang, W. Xu, S. Zhao, D. Ye, Y. Wang, Y. Xu, L. Zhou, Y. Chu, C. Zhang, et al. 2017. SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Reports 19 (11): 2331–2344.PubMedCrossRef
23.
go back to reference Ou, T., W. Yang, W. Li, Y. Lu, Z. Dong, H. Zhu, X. Sun, Z. Dong, X. Weng, S. Chang, et al. 2020. SIRT5 deficiency enhances the proliferative and therapeutic capacities of adipose-derived mesenchymal stem cells via metabolic switching. Clinical and Translational Medicine 10 (5): e172.PubMedCrossRefPubMedCentral Ou, T., W. Yang, W. Li, Y. Lu, Z. Dong, H. Zhu, X. Sun, Z. Dong, X. Weng, S. Chang, et al. 2020. SIRT5 deficiency enhances the proliferative and therapeutic capacities of adipose-derived mesenchymal stem cells via metabolic switching. Clinical and Translational Medicine 10 (5): e172.PubMedCrossRefPubMedCentral
24.
go back to reference Wang, G., J. Meyer, W. Cai, S. Softic, M. Li, E. Verdin, C. Newgard, B. Schilling, and C. Kahn. 2019. Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Molecular Cell 74 (4): 844-857.e847.PubMedCrossRefPubMedCentral Wang, G., J. Meyer, W. Cai, S. Softic, M. Li, E. Verdin, C. Newgard, B. Schilling, and C. Kahn. 2019. Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Molecular Cell 74 (4): 844-857.e847.PubMedCrossRefPubMedCentral
25.
go back to reference Lukey, M., K. Greene, and R. Cerione. 2020. Lysine succinylation and SIRT5 couple nutritional status to glutamine catabolism. Molecular & Cellular Oncology 7 (3): 1735284.CrossRef Lukey, M., K. Greene, and R. Cerione. 2020. Lysine succinylation and SIRT5 couple nutritional status to glutamine catabolism. Molecular & Cellular Oncology 7 (3): 1735284.CrossRef
26.
go back to reference Yang, R., X. Li, Y. Wu, G. Zhang, X. Liu, Y. Li, Y. Bao, W. Yang, and H. Cui. 2020. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 39 (14): 2975–2986.PubMedCrossRef Yang, R., X. Li, Y. Wu, G. Zhang, X. Liu, Y. Li, Y. Bao, W. Yang, and H. Cui. 2020. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 39 (14): 2975–2986.PubMedCrossRef
27.
go back to reference Altman, B., Z. Stine, and C. Dang. 2016. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nature Reviews Cancer 16 (11): 749.PubMedCrossRef Altman, B., Z. Stine, and C. Dang. 2016. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nature Reviews Cancer 16 (11): 749.PubMedCrossRef
28.
go back to reference Rardin, M., W. He, Y. Nishida, J. Newman, C. Carrico, S. Danielson, A. Guo, P. Gut, A. Sahu, B. Li, et al. 2013. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metabolism 18 (6): 920–933.PubMedCrossRefPubMedCentral Rardin, M., W. He, Y. Nishida, J. Newman, C. Carrico, S. Danielson, A. Guo, P. Gut, A. Sahu, B. Li, et al. 2013. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metabolism 18 (6): 920–933.PubMedCrossRefPubMedCentral
29.
go back to reference Wang, Y., H. Wang, J. Xu, J. Tan, L. Fu, J. Wang, T. Zou, D. Sun, Q. Gao, Y. Chen, et al. 2018. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nature Communications 9 (1): 545.PubMedCrossRefPubMedCentral Wang, Y., H. Wang, J. Xu, J. Tan, L. Fu, J. Wang, T. Zou, D. Sun, Q. Gao, Y. Chen, et al. 2018. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nature Communications 9 (1): 545.PubMedCrossRefPubMedCentral
30.
go back to reference Administration TNFaD. 2005. The principles and guidance of pharmacology research in Chinese medicine and natural drugs. In: GPT1–1. Edited by Administration TNFaD, vol. GPT1–1. the People's Republic of China: The National Food and Drug Administration. Administration TNFaD. 2005. The principles and guidance of pharmacology research in Chinese medicine and natural drugs. In: GPT1–1. Edited by Administration TNFaD, vol. GPT1–1. the People's Republic of China: The National Food and Drug Administration.
31.
go back to reference Care NRCCftUotGft, Animals UoL. 2011. Guide for the Care and Use of Laboratory Animals. Publication No 85-23(rev) 327 (3): 963–965. Care NRCCftUotGft, Animals UoL. 2011. Guide for the Care and Use of Laboratory Animals. Publication No 85-23(rev) 327 (3): 963–965.
32.
go back to reference Zimmermann, M. 1983. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16 (2): 109–110.PubMedCrossRef Zimmermann, M. 1983. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16 (2): 109–110.PubMedCrossRef
33.
go back to reference Nakamoto, K., T. Nishinaka, N. Sato, M. Mankura, Y. Koyama, F. Kasuya, and S. Tokuyama. 2013. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain. PLoS ONE 8 (12): e81563.PubMedCrossRefPubMedCentral Nakamoto, K., T. Nishinaka, N. Sato, M. Mankura, Y. Koyama, F. Kasuya, and S. Tokuyama. 2013. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain. PLoS ONE 8 (12): e81563.PubMedCrossRefPubMedCentral
34.
go back to reference Wang, D., Chen, M., Wei, Y., Geng, W., Hu, Y., Luo, Z., Cai, K. 2022. Construction of wogonin nanoparticle-containing strontium-doped nanoporous structure on titanium surface to promote osteoporosis fracture repair. Advanced Healthcare Materials 11(21): e2201405. Wang, D., Chen, M., Wei, Y., Geng, W., Hu, Y., Luo, Z., Cai, K. 2022. Construction of wogonin nanoparticle-containing strontium-doped nanoporous structure on titanium surface to promote osteoporosis fracture repair. Advanced Healthcare Materials 11(21): e2201405.
35.
go back to reference Jiang, L., Y. Wang, X. Wei, L. Yang, S. Liu, Y. Wang, Y. Xu, Z. Wang, C. Zhang, M. Zhang, et al. 2022. Improvement in phenotype homeostasis of macrophages by chitosan nanoparticles and subsequent impacts on liver injury and tumor treatment. Carbohydrate Polymers 277: 118891.PubMedCrossRef Jiang, L., Y. Wang, X. Wei, L. Yang, S. Liu, Y. Wang, Y. Xu, Z. Wang, C. Zhang, M. Zhang, et al. 2022. Improvement in phenotype homeostasis of macrophages by chitosan nanoparticles and subsequent impacts on liver injury and tumor treatment. Carbohydrate Polymers 277: 118891.PubMedCrossRef
36.
go back to reference Spel, L., and F. Martinon. 2020. Inflammasomes contributing to inflammation in arthritis. Immunological Reviews 294 (1): 48–62.PubMedCrossRef Spel, L., and F. Martinon. 2020. Inflammasomes contributing to inflammation in arthritis. Immunological Reviews 294 (1): 48–62.PubMedCrossRef
37.
go back to reference Zádori, Z., K. Király, M. Al-Khrasani, and K. Gyires. 2023. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacology & Therapeutics 241: 108327.CrossRef Zádori, Z., K. Király, M. Al-Khrasani, and K. Gyires. 2023. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacology & Therapeutics 241: 108327.CrossRef
38.
go back to reference Wang, Z., M. Xu, Z. Shi, C. Bao, H. Liu, C. Zhou, Y. Yan, C. Wang, G. Li, W. Zhang, et al. 2022. Mild moxibustion for Irritable Bowel Syndrome with Diarrhea (IBS-D): A randomized controlled trial. Journal of Ethnopharmacology 289: 115064.PubMedCrossRef Wang, Z., M. Xu, Z. Shi, C. Bao, H. Liu, C. Zhou, Y. Yan, C. Wang, G. Li, W. Zhang, et al. 2022. Mild moxibustion for Irritable Bowel Syndrome with Diarrhea (IBS-D): A randomized controlled trial. Journal of Ethnopharmacology 289: 115064.PubMedCrossRef
39.
go back to reference Li, X., G. Guo, F. Shen, L. Kong, F. Liang, and G. Sun. 2014. Moxibustion Activates Macrophage Autophagy and Protects Experimental Mice against Bacterial Infection. Evidence-based Complementary and Alternative Medicine : ECAM 2014: 450623.PubMedCrossRef Li, X., G. Guo, F. Shen, L. Kong, F. Liang, and G. Sun. 2014. Moxibustion Activates Macrophage Autophagy and Protects Experimental Mice against Bacterial Infection. Evidence-based Complementary and Alternative Medicine : ECAM 2014: 450623.PubMedCrossRef
40.
go back to reference Zhong, Y., L. Zhang, W. Lu, Y. Shang, and H. Zhou. 2022. Moxibustion regulates the polarization of macrophages through the IL-4/STAT6 pathway in rheumatoid arthritis. Cytokine 152: 155835.PubMedCrossRef Zhong, Y., L. Zhang, W. Lu, Y. Shang, and H. Zhou. 2022. Moxibustion regulates the polarization of macrophages through the IL-4/STAT6 pathway in rheumatoid arthritis. Cytokine 152: 155835.PubMedCrossRef
41.
go back to reference Li, H., X. Ye, Y. Su, W. He, J. Zhang, Q. Zhang, L. Zhan, and X. Jing. 2023. Mechanism of Acupuncture and Moxibustion on Promoting Mucosal Healing in Ulcerative Colitis. Chinese journal of integrative medicine 29 (9): 847–856.PubMedCrossRef Li, H., X. Ye, Y. Su, W. He, J. Zhang, Q. Zhang, L. Zhan, and X. Jing. 2023. Mechanism of Acupuncture and Moxibustion on Promoting Mucosal Healing in Ulcerative Colitis. Chinese journal of integrative medicine 29 (9): 847–856.PubMedCrossRef
42.
go back to reference Lee, D., J. Kim, M. Lee, T. Choi, S. Choi, and E. Ernst. 2010. Moxibustion for ulcerative colitis: A systematic review and meta-analysis. BMC Gastroenterology 10: 36.PubMedCrossRefPubMedCentral Lee, D., J. Kim, M. Lee, T. Choi, S. Choi, and E. Ernst. 2010. Moxibustion for ulcerative colitis: A systematic review and meta-analysis. BMC Gastroenterology 10: 36.PubMedCrossRefPubMedCentral
43.
go back to reference Huangan, W., Zhijun, W., Huirong, L., Jianbin, Z., Shuguang, Y., Xiaorong, C., Xiaopeng, M., Xueyong, S., Xiaomei, W., Luyi, W. 2016. Analgesic and anti-inflammatory effects of moxibustion on immune-related disease. World Chinese Medicine (Shi jie zhong yi yao) 11(12): 2505–2514+2520. Huangan, W., Zhijun, W., Huirong, L., Jianbin, Z., Shuguang, Y., Xiaorong, C., Xiaopeng, M., Xueyong, S., Xiaomei, W., Luyi, W. 2016. Analgesic and anti-inflammatory effects of moxibustion on immune-related disease. World Chinese Medicine (Shi jie zhong yi yao) 11(12): 2505–2514+2520.
44.
go back to reference Lu, W. T., X. C. Luo, Y. N. Shang, Y. M. Zhong, and H. Y. Zhou. 2020. Effects of moxibustion on serum cytokines in experimental animals with rheumatoid arthritis: a systematic review and meta-analysis. Zhen ci yan jiu Acupuncture research / [Zhongguo yi xue ke xue yuan Yi xue qing bao yan jiu suo bian ji] 45 (9): 751–761. Lu, W. T., X. C. Luo, Y. N. Shang, Y. M. Zhong, and H. Y. Zhou. 2020. Effects of moxibustion on serum cytokines in experimental animals with rheumatoid arthritis: a systematic review and meta-analysis. Zhen ci yan jiu Acupuncture research / [Zhongguo yi xue ke xue yuan Yi xue qing bao yan jiu suo bian ji] 45 (9): 751–761.
45.
go back to reference Hu, T., S. Shukla, E. Vernucci, C. He, D. Wang, R. King, K. Jha, K. Siddhanta, N. Mullen, K. Attri, et al. 2021. Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology 161 (5): 1584–1600.PubMedCrossRef Hu, T., S. Shukla, E. Vernucci, C. He, D. Wang, R. King, K. Jha, K. Siddhanta, N. Mullen, K. Attri, et al. 2021. Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology 161 (5): 1584–1600.PubMedCrossRef
46.
go back to reference Carrico, C., J. Meyer, W. He, B. Gibson, and E. Verdin. 2018. The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metabolism 27 (3): 497–512.PubMedCrossRefPubMedCentral Carrico, C., J. Meyer, W. He, B. Gibson, and E. Verdin. 2018. The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metabolism 27 (3): 497–512.PubMedCrossRefPubMedCentral
47.
go back to reference Zhang, R., J. Bons, G. Scheidemantle, X. Liu, O. Bielska, C. Carrico, J. Rose, I. Heckenbach, M. Scheibye-Knudsen, B. Schilling, et al. 2023. Histone malonylation is regulated by SIRT5 and KAT2A. iScience 26 (3): 106193.PubMedCrossRefPubMedCentral Zhang, R., J. Bons, G. Scheidemantle, X. Liu, O. Bielska, C. Carrico, J. Rose, I. Heckenbach, M. Scheibye-Knudsen, B. Schilling, et al. 2023. Histone malonylation is regulated by SIRT5 and KAT2A. iScience 26 (3): 106193.PubMedCrossRefPubMedCentral
48.
go back to reference Rajabi, N., T. Hansen, A. Nielsen, H. Nguyen, M. Baek, J. Bolding, O. Bahlke, S. Petersen, C. Bartling, K. Strømgaard, et al. 2022. Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme. Angewandte Chemie (International ed in English) 61 (22): e202115805.PubMedCrossRef Rajabi, N., T. Hansen, A. Nielsen, H. Nguyen, M. Baek, J. Bolding, O. Bahlke, S. Petersen, C. Bartling, K. Strømgaard, et al. 2022. Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme. Angewandte Chemie (International ed in English) 61 (22): e202115805.PubMedCrossRef
49.
go back to reference Head, P., S. Myung, Y. Chen, J. Schneller, C. Wang, N. Duncan, P. Hoffman, D. Chang, A. Gebremariam, M. Gucek, et al. 2022. Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin. Science Translational Medicine 14 (646): eabn4772.PubMedCrossRefPubMedCentral Head, P., S. Myung, Y. Chen, J. Schneller, C. Wang, N. Duncan, P. Hoffman, D. Chang, A. Gebremariam, M. Gucek, et al. 2022. Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin. Science Translational Medicine 14 (646): eabn4772.PubMedCrossRefPubMedCentral
50.
go back to reference He, M., H. Chiang, H. Luo, Z. Zheng, Q. Qiao, L. Wang, M. Tan, R. Ohkubo, W. Mu, S. Zhao, et al. 2020. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metabolism 31 (3): 580-591.e585.PubMedCrossRefPubMedCentral He, M., H. Chiang, H. Luo, Z. Zheng, Q. Qiao, L. Wang, M. Tan, R. Ohkubo, W. Mu, S. Zhao, et al. 2020. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metabolism 31 (3): 580-591.e585.PubMedCrossRefPubMedCentral
51.
go back to reference Polletta, L., E. Vernucci, I. Carnevale, T. Arcangeli, D. Rotili, S. Palmerio, C. Steegborn, T. Nowak, M. Schutkowski, L. Pellegrini, et al. 2015. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11 (2): 253–270.PubMedCrossRefPubMedCentral Polletta, L., E. Vernucci, I. Carnevale, T. Arcangeli, D. Rotili, S. Palmerio, C. Steegborn, T. Nowak, M. Schutkowski, L. Pellegrini, et al. 2015. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11 (2): 253–270.PubMedCrossRefPubMedCentral
52.
go back to reference Hanada, T., and A. Yoshimura. 2002. Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews 13: 413–421.CrossRef Hanada, T., and A. Yoshimura. 2002. Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews 13: 413–421.CrossRef
53.
go back to reference Inoue, N., and G. Schulert. 2023. Mouse models of systemic juvenile idiopathic arthritis and macrophage activation syndrome. Arthritis Research & Therapy 25 (1): 48.CrossRef Inoue, N., and G. Schulert. 2023. Mouse models of systemic juvenile idiopathic arthritis and macrophage activation syndrome. Arthritis Research & Therapy 25 (1): 48.CrossRef
54.
go back to reference Chi, X., X. Xu, B. Chen, J. Su, and Y. Du. 2023. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. Journal of Nanobiotechnology 21 (1): 105.PubMedCrossRefPubMedCentral Chi, X., X. Xu, B. Chen, J. Su, and Y. Du. 2023. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. Journal of Nanobiotechnology 21 (1): 105.PubMedCrossRefPubMedCentral
55.
go back to reference Bartoli-Leonard, F., J. Zimmer, A. Sonawane, K. Perez, M. Turner, S. Kuraoka, T. Pham, F. Li, M. Aikawa, S. Singh, et al. 2023. NLRP3 Inflammasome Activation in Peripheral Arterial Disease. Journal of the American Heart Association 12 (6): e026945.PubMedCrossRefPubMedCentral Bartoli-Leonard, F., J. Zimmer, A. Sonawane, K. Perez, M. Turner, S. Kuraoka, T. Pham, F. Li, M. Aikawa, S. Singh, et al. 2023. NLRP3 Inflammasome Activation in Peripheral Arterial Disease. Journal of the American Heart Association 12 (6): e026945.PubMedCrossRefPubMedCentral
56.
go back to reference Tang, H., X. Chen, H. Wang, H. Chu, C. Zhu, S. Huang, M. Zhang, and G. Shen. 2022. Acupuncture relieves the visceral pain of diarrhea-predominant irritable bowel syndrome rats by regulating P2X4 expression. American Journal of Translational Research 14 (8): 5563–5573.PubMedPubMedCentral Tang, H., X. Chen, H. Wang, H. Chu, C. Zhu, S. Huang, M. Zhang, and G. Shen. 2022. Acupuncture relieves the visceral pain of diarrhea-predominant irritable bowel syndrome rats by regulating P2X4 expression. American Journal of Translational Research 14 (8): 5563–5573.PubMedPubMedCentral
57.
go back to reference Sharma, R., Antypiuk, A., Vance, S., Manwani, D., Pearce, Q., Cox, J., An, X., Yazdanbakhsh, K., Vinchi, F. 2023. Macrophage metabolic rewiring improves heme-suppressed efferocytosis and tissue damage in sickle cell disease. Blood 141(25): 3091–3108. Sharma, R., Antypiuk, A., Vance, S., Manwani, D., Pearce, Q., Cox, J., An, X., Yazdanbakhsh, K., Vinchi, F. 2023. Macrophage metabolic rewiring improves heme-suppressed efferocytosis and tissue damage in sickle cell disease. Blood 141(25): 3091–3108.
58.
go back to reference Li, X., R. Hou, H. Ding, X. Gao, Z. Wei, T. Qi, and L. Fang. 2023. Mollugin ameliorates murine allergic airway inflammation by inhibiting Th2 response and M2 macrophage activation. European Journal of Pharmacology 946: 175630.PubMedCrossRef Li, X., R. Hou, H. Ding, X. Gao, Z. Wei, T. Qi, and L. Fang. 2023. Mollugin ameliorates murine allergic airway inflammation by inhibiting Th2 response and M2 macrophage activation. European Journal of Pharmacology 946: 175630.PubMedCrossRef
59.
go back to reference Sha, W., B. Zhao, H. Wei, Y. Yang, H. Yin, J. Gao, W. Zhao, W. Kong, G. Ge, and T. Lei. 2023. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine : International journal of phytotherapy and phytopharmacology 112: 154667.PubMedCrossRef Sha, W., B. Zhao, H. Wei, Y. Yang, H. Yin, J. Gao, W. Zhao, W. Kong, G. Ge, and T. Lei. 2023. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine : International journal of phytotherapy and phytopharmacology 112: 154667.PubMedCrossRef
60.
go back to reference Bonowicz, K., K. Mikołajczyk, I. Faisal, M. Qamar, K. Steinbrink, K. Kleszczyński, A. Grzanka, and M. Gagat. 2022. Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. International Journal of Molecular Sciences 23 (23): 15335.PubMedCrossRefPubMedCentral Bonowicz, K., K. Mikołajczyk, I. Faisal, M. Qamar, K. Steinbrink, K. Kleszczyński, A. Grzanka, and M. Gagat. 2022. Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. International Journal of Molecular Sciences 23 (23): 15335.PubMedCrossRefPubMedCentral
61.
go back to reference Antar, S., N. Ashour, M. Marawan, and A. Al-Karmalawy. 2023. Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. International Journal of Molecular Sciences 24 (4): 4004.PubMedCrossRefPubMedCentral Antar, S., N. Ashour, M. Marawan, and A. Al-Karmalawy. 2023. Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. International Journal of Molecular Sciences 24 (4): 4004.PubMedCrossRefPubMedCentral
62.
go back to reference Karnam, K., K. Sedmaki, P. Sharma, A. Mahale, B. Ghosh, and O. Kulkarni. 2023. Pharmacological blockade of HDAC3 accelerates diabetic wound healing by regulating macrophage activation. Life Sciences 2023: 121574.CrossRef Karnam, K., K. Sedmaki, P. Sharma, A. Mahale, B. Ghosh, and O. Kulkarni. 2023. Pharmacological blockade of HDAC3 accelerates diabetic wound healing by regulating macrophage activation. Life Sciences 2023: 121574.CrossRef
63.
go back to reference Bosco, M. 2019. Macrophage polarization: Reaching across the aisle? The Journal of Allergy and Clinical Immunology 143 (4): 1348–1350.PubMedCrossRef Bosco, M. 2019. Macrophage polarization: Reaching across the aisle? The Journal of Allergy and Clinical Immunology 143 (4): 1348–1350.PubMedCrossRef
64.
go back to reference Medina, C., P. Mehrotra, S. Arandjelovic, J. Perry, Y. Guo, S. Morioka, B. Barron, S. Walk, B. Ghesquière, A. Krupnick, et al. 2020. Metabolites released from apoptotic cells act as tissue messengers. Nature 580 (7801): 130–135.PubMedCrossRefPubMedCentral Medina, C., P. Mehrotra, S. Arandjelovic, J. Perry, Y. Guo, S. Morioka, B. Barron, S. Walk, B. Ghesquière, A. Krupnick, et al. 2020. Metabolites released from apoptotic cells act as tissue messengers. Nature 580 (7801): 130–135.PubMedCrossRefPubMedCentral
65.
go back to reference Locati, M., G. Curtale, and A. Mantovani. 2020. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annual Review of Pathology 15: 123–147.PubMedCrossRef Locati, M., G. Curtale, and A. Mantovani. 2020. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annual Review of Pathology 15: 123–147.PubMedCrossRef
66.
67.
go back to reference Atri, C., Guerfali, F., Laouini, D. 2018. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International Journal of Molecular Sciences 19 (6): 180. Atri, C., Guerfali, F., Laouini, D. 2018. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International Journal of Molecular Sciences 19 (6): 180.
68.
go back to reference Wen, J., D. Li, S. Liang, C. Yang, J. Tang, and H. Liu. 2022. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Frontiers in Immunology 13: 946832.PubMedCrossRefPubMedCentral Wen, J., D. Li, S. Liang, C. Yang, J. Tang, and H. Liu. 2022. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Frontiers in Immunology 13: 946832.PubMedCrossRefPubMedCentral
70.
go back to reference Cutolo, M., R. Campitiello, E. Gotelli, and S. Soldano. 2022. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology 13: 867260.PubMedCrossRefPubMedCentral Cutolo, M., R. Campitiello, E. Gotelli, and S. Soldano. 2022. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology 13: 867260.PubMedCrossRefPubMedCentral
71.
go back to reference Wang, Y., C. Han, D. Cui, Y. Li, Y. Ma, and W. Wei. 2017. Is macrophage polarization important in rheumatoid arthritis? International Immunopharmacology 50: 345–352.PubMedCrossRef Wang, Y., C. Han, D. Cui, Y. Li, Y. Ma, and W. Wei. 2017. Is macrophage polarization important in rheumatoid arthritis? International Immunopharmacology 50: 345–352.PubMedCrossRef
72.
go back to reference Chen, Z., A. Bozec, A. Ramming, and G. Schett. 2019. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nature Reviews Rheumatology 15 (1): 9–17.PubMedCrossRef Chen, Z., A. Bozec, A. Ramming, and G. Schett. 2019. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nature Reviews Rheumatology 15 (1): 9–17.PubMedCrossRef
73.
go back to reference Yang, D., L. Yang, J. Cai, X. Hu, H. Li, X. Zhang, X. Zhang, X. Chen, H. Dong, H. Nie, et al. 2021. A sweet spot for macrophages: Focusing on polarization. Pharmacological Research 167: 105576.PubMedCrossRef Yang, D., L. Yang, J. Cai, X. Hu, H. Li, X. Zhang, X. Zhang, X. Chen, H. Dong, H. Nie, et al. 2021. A sweet spot for macrophages: Focusing on polarization. Pharmacological Research 167: 105576.PubMedCrossRef
74.
go back to reference Vlk, A., D. Prantner, K. Shirey, D. Perkins, M. Buzza, V. Thumbigere-Math, A. Keegan, and S. Vogel. 2023. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023: e0120823.CrossRef Vlk, A., D. Prantner, K. Shirey, D. Perkins, M. Buzza, V. Thumbigere-Math, A. Keegan, and S. Vogel. 2023. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023: e0120823.CrossRef
75.
go back to reference Shimai, R., K. Hanafusa, H. Nakayama, E. Oshima, M. Kato, K. Kano, I. Matsuo, T. Miyazaki, T. Tokano, Y. Hirabayashi, et al. 2023. Lysophosphatidylglucoside/GPR55 signaling promotes foam cell formation in human M2c macrophages. Scientific Reports 13 (1): 12740.PubMedCrossRefPubMedCentral Shimai, R., K. Hanafusa, H. Nakayama, E. Oshima, M. Kato, K. Kano, I. Matsuo, T. Miyazaki, T. Tokano, Y. Hirabayashi, et al. 2023. Lysophosphatidylglucoside/GPR55 signaling promotes foam cell formation in human M2c macrophages. Scientific Reports 13 (1): 12740.PubMedCrossRefPubMedCentral
76.
go back to reference Minhas, P., L. Liu, P. Moon, A. Joshi, C. Dove, S. Mhatre, K. Contrepois, Q. Wang, B. Lee, M. Coronado, et al. 2019. Macrophage de novo NAD synthesis specifies immune function in aging and inflammation. Nature immunology 20 (1): 50–63.PubMedCrossRef Minhas, P., L. Liu, P. Moon, A. Joshi, C. Dove, S. Mhatre, K. Contrepois, Q. Wang, B. Lee, M. Coronado, et al. 2019. Macrophage de novo NAD synthesis specifies immune function in aging and inflammation. Nature immunology 20 (1): 50–63.PubMedCrossRef
77.
go back to reference Fan, M., H. Shi, H. Yao, W. Wang, Y. Zhang, C. Jiang, and R. Lin. 2022. Glutamate regulates gliosis of BMSCs to promote ENS regeneration through α-KG and H3K9/H3K27 demethylation. Stem Cell Research & Therapy 13 (1): 255.CrossRef Fan, M., H. Shi, H. Yao, W. Wang, Y. Zhang, C. Jiang, and R. Lin. 2022. Glutamate regulates gliosis of BMSCs to promote ENS regeneration through α-KG and H3K9/H3K27 demethylation. Stem Cell Research & Therapy 13 (1): 255.CrossRef
78.
go back to reference Sidrat, T., A. Khan, M. Joo, Y. Wei, K. Lee, L. Xu, and I. Kong. 2020. Bovine Oviduct Epithelial Cell-Derived Culture Media and Exosomes Improve Mitochondrial Health by Restoring Metabolic Flux during Pre-Implantation Development. International Journal of Molecular Sciences 21 (20): 7589.PubMedCrossRefPubMedCentral Sidrat, T., A. Khan, M. Joo, Y. Wei, K. Lee, L. Xu, and I. Kong. 2020. Bovine Oviduct Epithelial Cell-Derived Culture Media and Exosomes Improve Mitochondrial Health by Restoring Metabolic Flux during Pre-Implantation Development. International Journal of Molecular Sciences 21 (20): 7589.PubMedCrossRefPubMedCentral
79.
80.
go back to reference Mathioudakis, L., M. Bourbouli, E. Daklada, S. Kargatzi, K. Michaelidou, and I. Zaganas. 2019. Localization of Human Glutamate Dehydrogenases Provides Insights into Their Metabolic Role and Their Involvement in Disease Processes. Neurochemical Research 44 (1): 170–187.PubMedCrossRef Mathioudakis, L., M. Bourbouli, E. Daklada, S. Kargatzi, K. Michaelidou, and I. Zaganas. 2019. Localization of Human Glutamate Dehydrogenases Provides Insights into Their Metabolic Role and Their Involvement in Disease Processes. Neurochemical Research 44 (1): 170–187.PubMedCrossRef
81.
go back to reference Bunik, V., A. Artiukhov, V. Aleshin, and G. Mkrtchyan. 2016. Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. Biology 5 (4): 53.PubMedCrossRefPubMedCentral Bunik, V., A. Artiukhov, V. Aleshin, and G. Mkrtchyan. 2016. Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. Biology 5 (4): 53.PubMedCrossRefPubMedCentral
82.
83.
go back to reference Yani, T., C. Yimin, H. Yifan, Z. Ning, L. Peiran, X. Wenwen, and L. Qi. 2022. Research Progress of Mechanism of Moxibustion. Chinese Journal of Information on TCM 29 (11): 148–151. Yani, T., C. Yimin, H. Yifan, Z. Ning, L. Peiran, X. Wenwen, and L. Qi. 2022. Research Progress of Mechanism of Moxibustion. Chinese Journal of Information on TCM 29 (11): 148–151.
Metadata
Title
Moxibustion Alleviates Inflammation via SIRT5-mediated Post-translational Modification and Macrophage Polarization
Authors
Chuan-yi Zuo
Cheng-shun Zhang
Han-xiao Zhang
Chun-yan Gou
Hong Lei
Feng-wei Tian
Zhu-xing Wang
Hai-yan Yin
Shu-guang Yu
Publication date
03-02-2025
Publisher
Springer US
Keyword
Arthritis
Published in
Inflammation
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-025-02239-y

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on adolescent vaping

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more