Skip to main content
Top

Open Access 12-03-2025 | Antibiotic | ORIGINAL RESEARCH

In Vitro Activity of Bacteriophages Against Ocular Methicillin-resistant S. aureus Isolates Collected in the US

Authors: Camille André, Mathieu Medina, Camille Kolenda, Leslie Blazière, Emilie Helluin, Gregory Resch, Paulo J. M. Bispo, Frédéric Laurent

Published in: Ophthalmology and Therapy

Login to get access

Abstract

Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of sight-threatening infections in the US. These strains pose a significant challenge in managing ocular infections, as they frequently exhibit resistance to first-line empirical antibiotics. To assess the potential of bacteriophages as innovative topical therapies for treatment of recalcitrant ocular infections, we evaluated the in vitro antimicrobial activity of a set of anti-S. aureus phages against a collection of ocular MRSA clinical isolates collected in the US.

Methods

The host range of six phages (V4SA2, V1SA9, V1SA12, V1SA19, V1SA20 and V1SA22) was assessed using the spot assay on a panel of 50 multidrug-resistant (MDR) ocular MRSA isolates selected to be representative of clones circulating in the US. Subsequently, liquid culture-based host range assay was performed for the three most active phages using different multiplicity of infection (MOI of 10–2, 1 or 100 phages/bacteria).

Results

In total, 90.0% of bacterial isolates were susceptible to at least one of the six phages. The spot host range assay showed that phages V1SA19, V1SA20 and V1SA22 had the broadest spectrum, being active against 86%, 84% and 82% of the isolates, respectively, including the MDR-MRSA CC5 and the community-associated CC8 lineages. A phage dose effect was observed across the liquid culture-based host range assay.

Conclusion

Phages V1SA19, V1SA20 and V1SA22 exhibited high antimicrobial activity against ocular MRSA. Bacteriophages represent a promising anti-infective strategy in ophthalmology that could be explored for improved topical therapy of recalcitrant MRSA infections.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kowalski RP, Dhaliwal DK. Ocular bacterial infections: current and future treatment options. Expert Rev Anti Infect Ther. 2005;3:131–9.PubMedCrossRef Kowalski RP, Dhaliwal DK. Ocular bacterial infections: current and future treatment options. Expert Rev Anti Infect Ther. 2005;3:131–9.PubMedCrossRef
4.
go back to reference David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23:616–87.PubMedPubMedCentralCrossRef David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23:616–87.PubMedPubMedCentralCrossRef
5.
go back to reference Asbell PA, Sanfilippo CM, Sahm DF, DeCory HH. Trends in antibiotic resistance among ocular microorganisms in the United States from 2009 to 2018. JAMA Ophthalmol. 2020;138:439.PubMedCrossRef Asbell PA, Sanfilippo CM, Sahm DF, DeCory HH. Trends in antibiotic resistance among ocular microorganisms in the United States from 2009 to 2018. JAMA Ophthalmol. 2020;138:439.PubMedCrossRef
6.
go back to reference André C, Van Camp AG, Ung L, Gilmore MS, Bispo PJM. Characterization of the resistome and predominant genetic lineages of Gram-positive bacteria causing keratitis. Antimicrob Agents Chemother. 2024;68: e0124723.PubMedCrossRef André C, Van Camp AG, Ung L, Gilmore MS, Bispo PJM. Characterization of the resistome and predominant genetic lineages of Gram-positive bacteria causing keratitis. Antimicrob Agents Chemother. 2024;68: e0124723.PubMedCrossRef
7.
go back to reference Bispo PJM, Ung L, Chodosh J, Gilmore MS. Hospital-associated multidrug-resistant MRSA lineages are trophic to the ocular surface and cause severe microbial keratitis. Front Public Health. 2020;8:204.PubMedPubMedCentralCrossRef Bispo PJM, Ung L, Chodosh J, Gilmore MS. Hospital-associated multidrug-resistant MRSA lineages are trophic to the ocular surface and cause severe microbial keratitis. Front Public Health. 2020;8:204.PubMedPubMedCentralCrossRef
8.
go back to reference Liu D, Van Belleghem JD, de Vries CR, Burgener E, Chen Q, Manasherob R, et al. The safety and toxicity of phage therapy: a review of animal and clinical studies. Viruses. 2021;13:1268.PubMedPubMedCentralCrossRef Liu D, Van Belleghem JD, de Vries CR, Burgener E, Chen Q, Manasherob R, et al. The safety and toxicity of phage therapy: a review of animal and clinical studies. Viruses. 2021;13:1268.PubMedPubMedCentralCrossRef
10.
go back to reference Ferry T, Leboucher G, Fevre C, Herry Y, Conrad A, Josse J, et al. Salvage Debridement, Antibiotics and Implant Retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open Forum Infect Dis. 2018;5:ofy269.PubMedPubMedCentralCrossRef Ferry T, Leboucher G, Fevre C, Herry Y, Conrad A, Josse J, et al. Salvage Debridement, Antibiotics and Implant Retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open Forum Infect Dis. 2018;5:ofy269.PubMedPubMedCentralCrossRef
11.
go back to reference Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care. 2016;25:S27-33.CrossRef Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care. 2016;25:S27-33.CrossRef
12.
go back to reference Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Heart Lung Transplant. 2019;38:475–6.PubMedCrossRef Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Heart Lung Transplant. 2019;38:475–6.PubMedCrossRef
13.
go back to reference Rafii F, Sutherland JB, Cerniglia CE. Effects of treatment with antimicrobial agents on the human colonic microflora. Ther Clin Risk Manag. 2008;4:1343–58.PubMedPubMedCentralCrossRef Rafii F, Sutherland JB, Cerniglia CE. Effects of treatment with antimicrobial agents on the human colonic microflora. Ther Clin Risk Manag. 2008;4:1343–58.PubMedPubMedCentralCrossRef
14.
go back to reference Abdelkader K, Gerstmans H, Saafan A, Dishisha T, Briers Y. The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses. 2019;11:96.PubMedPubMedCentralCrossRef Abdelkader K, Gerstmans H, Saafan A, Dishisha T, Briers Y. The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses. 2019;11:96.PubMedPubMedCentralCrossRef
16.
go back to reference Hsieh S-E, Lo H-H, Chen S-T, Lee M-C, Tseng Y-H. Wide host range and strong lytic activity of Staphylococcus aureus lytic phage Stau2. Appl Environ Microbiol. 2011;77:756–61.PubMedCrossRef Hsieh S-E, Lo H-H, Chen S-T, Lee M-C, Tseng Y-H. Wide host range and strong lytic activity of Staphylococcus aureus lytic phage Stau2. Appl Environ Microbiol. 2011;77:756–61.PubMedCrossRef
17.
go back to reference Botka T, Pantůček R, Mašlaňová I, Benešík M, Petráš P, Růžičková V, et al. Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci. Sci Rep. 2019;9:5475.PubMedPubMedCentralCrossRef Botka T, Pantůček R, Mašlaňová I, Benešík M, Petráš P, Růžičková V, et al. Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci. Sci Rep. 2019;9:5475.PubMedPubMedCentralCrossRef
18.
go back to reference Vandersteegen K, Mattheus W, Ceyssens P-J, Bilocq F, De Vos D, Pirnay J-P, et al. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS ONE. 2011;6: e24418.PubMedPubMedCentralCrossRef Vandersteegen K, Mattheus W, Ceyssens P-J, Bilocq F, De Vos D, Pirnay J-P, et al. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS ONE. 2011;6: e24418.PubMedPubMedCentralCrossRef
19.
go back to reference Sáez Moreno D, Visram Z, Mutti M, Restrepo-Córdoba M, Hartmann S, Kremers AI, et al. ε2-phages are naturally bred and have a vastly improved host range in Staphylococcus aureus over wild type phages. Pharmaceuticals (Basel). 2021;14:325.PubMedCrossRef Sáez Moreno D, Visram Z, Mutti M, Restrepo-Córdoba M, Hartmann S, Kremers AI, et al. ε2-phages are naturally bred and have a vastly improved host range in Staphylococcus aureus over wild type phages. Pharmaceuticals (Basel). 2021;14:325.PubMedCrossRef
20.
go back to reference Gutiérrez D, Vandenheuvel D, Martínez B, Rodríguez A, Lavigne R, García P. Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms. Appl Environ Microbiol. 2015;81:3336–48.PubMedPubMedCentralCrossRef Gutiérrez D, Vandenheuvel D, Martínez B, Rodríguez A, Lavigne R, García P. Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms. Appl Environ Microbiol. 2015;81:3336–48.PubMedPubMedCentralCrossRef
21.
go back to reference Kolenda C, Medina M, Bonhomme M, Laumay F, Roussel-Gaillard T, Martins-Simoes P, et al. Phage therapy against Staphylococcus aureus: selection and optimization of production protocols of novel broad-spectrum Silviavirus phages. Pharmaceutics. 2022;14:1885.PubMedPubMedCentralCrossRef Kolenda C, Medina M, Bonhomme M, Laumay F, Roussel-Gaillard T, Martins-Simoes P, et al. Phage therapy against Staphylococcus aureus: selection and optimization of production protocols of novel broad-spectrum Silviavirus phages. Pharmaceutics. 2022;14:1885.PubMedPubMedCentralCrossRef
22.
go back to reference André C, Lebreton F, Van Tyne D, Cadorette J, Boody R, Gilmore MS, et al. Microbiology of eye infections at the Massachusetts eye and ear: an 8-year retrospective review combined with genomic epidemiology. Am J Ophthalmol. 2023;S0002–9394(23):00248–9. André C, Lebreton F, Van Tyne D, Cadorette J, Boody R, Gilmore MS, et al. Microbiology of eye infections at the Massachusetts eye and ear: an 8-year retrospective review combined with genomic epidemiology. Am J Ophthalmol. 2023;S0002–9394(23):00248–9.
23.
go back to reference Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—10th ed. M07-A11. Wayne: CLSI; 2018. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—10th ed. M07-A11. Wayne: CLSI; 2018.
24.
go back to reference Francisco AP, Bugalho M, Ramirez M, Carriço JA. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinform. 2009;10:152.CrossRef Francisco AP, Bugalho M, Ramirez M, Carriço JA. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinform. 2009;10:152.CrossRef
25.
go back to reference Argimón S, Yeats CA, Goater RJ, Abudahab K, Taylor B, Underwood A, et al. A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella Typhi at pathogenwatch. Nat Commun. 2021;12:2879.PubMedPubMedCentralCrossRef Argimón S, Yeats CA, Goater RJ, Abudahab K, Taylor B, Underwood A, et al. A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella Typhi at pathogenwatch. Nat Commun. 2021;12:2879.PubMedPubMedCentralCrossRef
28.
go back to reference Green SI, Kaelber JT, Ma L, Trautner BW, Ramig RF, Maresso AW. Bacteriophages from ExPEC reservoirs kill pandemic multidrug-resistant strains of clonal group ST131 in animal models of bacteremia. Sci Rep. 2017;7:46151.PubMedPubMedCentralCrossRef Green SI, Kaelber JT, Ma L, Trautner BW, Ramig RF, Maresso AW. Bacteriophages from ExPEC reservoirs kill pandemic multidrug-resistant strains of clonal group ST131 in animal models of bacteremia. Sci Rep. 2017;7:46151.PubMedPubMedCentralCrossRef
29.
go back to reference Xie Y, Wahab L, Gill JJ. Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses. 2018;10:189.PubMedPubMedCentralCrossRef Xie Y, Wahab L, Gill JJ. Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses. 2018;10:189.PubMedPubMedCentralCrossRef
30.
go back to reference Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.PubMedCrossRef Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.PubMedCrossRef
31.
go back to reference Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet. 2006;367:731–9.PubMedCrossRef Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet. 2006;367:731–9.PubMedCrossRef
32.
go back to reference Grundstad ML, Parlet CP, Kwiecinski JM, Kavanaugh JS, Crosby HA, Cho Y-S, et al. Quorum sensing, virulence, and antibiotic resistance of USA100 methicillin-resistant Staphylococcus aureus isolates. mSphere. 2019;4:e00553-e619.PubMedPubMedCentralCrossRef Grundstad ML, Parlet CP, Kwiecinski JM, Kavanaugh JS, Crosby HA, Cho Y-S, et al. Quorum sensing, virulence, and antibiotic resistance of USA100 methicillin-resistant Staphylococcus aureus isolates. mSphere. 2019;4:e00553-e619.PubMedPubMedCentralCrossRef
33.
go back to reference Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.CrossRef Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.CrossRef
34.
go back to reference Haas W, Pillar CM, Torres M, Morris TW, Sahm DF. Monitoring antibiotic resistance in ocular microorganisms: results from the Antibiotic Resistance Monitoring in Ocular micRorganisms (ARMOR) 2009 surveillance study. Am J Ophthalmol. 2011;152:567-574.e3.PubMedCrossRef Haas W, Pillar CM, Torres M, Morris TW, Sahm DF. Monitoring antibiotic resistance in ocular microorganisms: results from the Antibiotic Resistance Monitoring in Ocular micRorganisms (ARMOR) 2009 surveillance study. Am J Ophthalmol. 2011;152:567-574.e3.PubMedCrossRef
35.
go back to reference Bertino JS. Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics. Clin Ophthalmol. 2009;3:507–21.PubMedPubMedCentralCrossRef Bertino JS. Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics. Clin Ophthalmol. 2009;3:507–21.PubMedPubMedCentralCrossRef
36.
go back to reference Bispo PJM, Ung L, Chodosh J, Gilmore MS. The challenge of antibiotic resistance in corneal infection. In: Colby K, Dana R, editors. Foundations of corneal disease: past, present and future. Cham: Springer International Publishing; 2020. p. 277–88.CrossRef Bispo PJM, Ung L, Chodosh J, Gilmore MS. The challenge of antibiotic resistance in corneal infection. In: Colby K, Dana R, editors. Foundations of corneal disease: past, present and future. Cham: Springer International Publishing; 2020. p. 277–88.CrossRef
37.
go back to reference Kutter EM, Kuhl SJ, Abedon ST. Re-establishing a place for phage therapy in western medicine. Future Microbiol. 2015;10:685–8.PubMedCrossRef Kutter EM, Kuhl SJ, Abedon ST. Re-establishing a place for phage therapy in western medicine. Future Microbiol. 2015;10:685–8.PubMedCrossRef
38.
go back to reference Bispo PJM, Sahm DF, Asbell PA. A systematic review of multi-decade antibiotic resistance data for ocular bacterial pathogens in the United States. Ophthalmol Ther. 2022;11:503–20.PubMedPubMedCentralCrossRef Bispo PJM, Sahm DF, Asbell PA. A systematic review of multi-decade antibiotic resistance data for ocular bacterial pathogens in the United States. Ophthalmol Ther. 2022;11:503–20.PubMedPubMedCentralCrossRef
39.
go back to reference Johnson WL, Sohn MB, Taffner S, Chatterjee P, Dunman PM, Pecora N, et al. Genomics of Staphylococcus aureus ocular isolates. PLoS ONE. 2021;16: e0250975.PubMedPubMedCentralCrossRef Johnson WL, Sohn MB, Taffner S, Chatterjee P, Dunman PM, Pecora N, et al. Genomics of Staphylococcus aureus ocular isolates. PLoS ONE. 2021;16: e0250975.PubMedPubMedCentralCrossRef
40.
go back to reference McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003;41:5113–20.PubMedPubMedCentralCrossRef McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003;41:5113–20.PubMedPubMedCentralCrossRef
41.
go back to reference Ferry T, Kolenda C, Briot T, Lustig S, Leboucher G, Laurent F, et al. Implementation of a complex bone and joint infection phage therapy centre in France: lessons to be learned after 4 years’ experience. Clin Microbiol Infect. 2022;28:145–6.PubMedCrossRef Ferry T, Kolenda C, Briot T, Lustig S, Leboucher G, Laurent F, et al. Implementation of a complex bone and joint infection phage therapy centre in France: lessons to be learned after 4 years’ experience. Clin Microbiol Infect. 2022;28:145–6.PubMedCrossRef
42.
go back to reference Ferry T, Boucher F, Fevre C, Perpoint T, Chateau J, Petitjean C, et al. Innovations for the treatment of a complex bone and joint infection due to XDR Pseudomonas aeruginosa including local application of a selected cocktail of bacteriophages. J Antimicrob Chemother. 2018;73:2901–3.PubMedCrossRef Ferry T, Boucher F, Fevre C, Perpoint T, Chateau J, Petitjean C, et al. Innovations for the treatment of a complex bone and joint infection due to XDR Pseudomonas aeruginosa including local application of a selected cocktail of bacteriophages. J Antimicrob Chemother. 2018;73:2901–3.PubMedCrossRef
43.
go back to reference Kishimoto T, Ishida W, Nakajima I, Ujihara T, Suzuki T, Uchiyama J, et al. Intracameral bacteriophage injection as postoperative prophylaxis for Enterococcus faecalis-Induced endophthalmitis after cataract surgery in rabbits. Transl Vis Sci Technol. 2022;11:2.PubMedPubMedCentralCrossRef Kishimoto T, Ishida W, Nakajima I, Ujihara T, Suzuki T, Uchiyama J, et al. Intracameral bacteriophage injection as postoperative prophylaxis for Enterococcus faecalis-Induced endophthalmitis after cataract surgery in rabbits. Transl Vis Sci Technol. 2022;11:2.PubMedPubMedCentralCrossRef
44.
go back to reference Fukuda K, Kishimoto T, Ishida W, Suzuki T, Uchiyama J, Matsuzaki S, et al. Therapeutic effects of intravitreous bacteriophage on Enterococcus faecalis endophthalmitis in mice. Investig Ophthalmol Vis Sci. 2019;60:2539. Fukuda K, Kishimoto T, Ishida W, Suzuki T, Uchiyama J, Matsuzaki S, et al. Therapeutic effects of intravitreous bacteriophage on Enterococcus faecalis endophthalmitis in mice. Investig Ophthalmol Vis Sci. 2019;60:2539.
45.
go back to reference Rahimzadeh G, Saeedi M, Nokhodchi A, Moosazadeh M, Ghasemi M, Rostamkalaei SS, et al. Evaluation of in-situ gel-forming eye drop containing bacteriophage against Pseudomonas aeruginosa keratoconjunctivitis in vivo. Bioimpacts. 2021;11:281.PubMedCrossRef Rahimzadeh G, Saeedi M, Nokhodchi A, Moosazadeh M, Ghasemi M, Rostamkalaei SS, et al. Evaluation of in-situ gel-forming eye drop containing bacteriophage against Pseudomonas aeruginosa keratoconjunctivitis in vivo. Bioimpacts. 2021;11:281.PubMedCrossRef
47.
go back to reference Moller AG, Winston K, Ji S, Wang J, Hargita Davis MN, Solís-Lemus CR, et al. Genes Influencing phage host range in Staphylococcus aureus on a species-wide scale. mSphere. 2021;6:e01263-e1320.PubMedPubMedCentralCrossRef Moller AG, Winston K, Ji S, Wang J, Hargita Davis MN, Solís-Lemus CR, et al. Genes Influencing phage host range in Staphylococcus aureus on a species-wide scale. mSphere. 2021;6:e01263-e1320.PubMedPubMedCentralCrossRef
48.
49.
go back to reference Singh PK, Donovan DM, Kumar A. Intravitreal Injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis. Antimicrob Agents Chemother. 2014;58:4621–9.PubMedPubMedCentralCrossRef Singh PK, Donovan DM, Kumar A. Intravitreal Injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis. Antimicrob Agents Chemother. 2014;58:4621–9.PubMedPubMedCentralCrossRef
50.
go back to reference Kolenda C, Josse J, Medina M, Fevre C, Lustig S, Ferry T, et al. Evaluation of the activity of a combination of three bacteriophages alone or in association with antibiotics on Staphylococcus aureus embedded in biofilm or internalized in osteoblasts. Antimicrob Agents Chemother. 2020;64:e02231-e2319.PubMedPubMedCentralCrossRef Kolenda C, Josse J, Medina M, Fevre C, Lustig S, Ferry T, et al. Evaluation of the activity of a combination of three bacteriophages alone or in association with antibiotics on Staphylococcus aureus embedded in biofilm or internalized in osteoblasts. Antimicrob Agents Chemother. 2020;64:e02231-e2319.PubMedPubMedCentralCrossRef
51.
go back to reference Ferry T, Kolenda C, Laurent F, Leboucher G, Merabischvilli M, Djebara S, et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat Commun. 2022;13:4239.PubMedPubMedCentralCrossRef Ferry T, Kolenda C, Laurent F, Leboucher G, Merabischvilli M, Djebara S, et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat Commun. 2022;13:4239.PubMedPubMedCentralCrossRef
52.
go back to reference Fabijan AP, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: recent accomplishments but continuing challenges. PLoS Biol. 2023;21: e3002119.CrossRef Fabijan AP, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: recent accomplishments but continuing challenges. PLoS Biol. 2023;21: e3002119.CrossRef
53.
go back to reference Zalewska-Piątek B. Phage therapy—challenges, opportunities and future prospects. Pharmaceuticals (Basel). 2023;16:1638.PubMedCrossRef Zalewska-Piątek B. Phage therapy—challenges, opportunities and future prospects. Pharmaceuticals (Basel). 2023;16:1638.PubMedCrossRef
54.
go back to reference Segundo-Arizmendi N, Arellano-Maciel D, Rivera-Ramírez A, Piña-González AM, López-Leal G, Hernández-Baltazar E. Bacteriophages: a challenge for antimicrobial therapy. Microorganisms. 2025;13:100.PubMedPubMedCentralCrossRef Segundo-Arizmendi N, Arellano-Maciel D, Rivera-Ramírez A, Piña-González AM, López-Leal G, Hernández-Baltazar E. Bacteriophages: a challenge for antimicrobial therapy. Microorganisms. 2025;13:100.PubMedPubMedCentralCrossRef
Metadata
Title
In Vitro Activity of Bacteriophages Against Ocular Methicillin-resistant S. aureus Isolates Collected in the US
Authors
Camille André
Mathieu Medina
Camille Kolenda
Leslie Blazière
Emilie Helluin
Gregory Resch
Paulo J. M. Bispo
Frédéric Laurent
Publication date
12-03-2025
Publisher
Springer Healthcare
Keyword
Antibiotic
Published in
Ophthalmology and Therapy
Print ISSN: 2193-8245
Electronic ISSN: 2193-6528
DOI
https://doi.org/10.1007/s40123-025-01113-2

Elevate your expertise in aplastic anemia (Link opens in a new window)

Transform the way you care for your patients with aplastic anemia with our 3-module series using real-world case studies and expert insights. Discover why early diagnosis matters, explore the benefits and risks of current treatments, and develop tailored approaches for complex cases. 

Supported by:
  • Pfizer
Developed by: Springer Healthcare IME
Learn more

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video