Skip to main content
Top
Published in:

11-04-2024 | Antibiotic | Review Article

CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance

Authors: Muhammad Shahzad Rafiq, Muhammad AbuBakar Shabbir, Ahmed Raza, Shoaib Irshad, Andleeb Asghar, Muhammad Kashif Maan, Mushtaq Ahmed Gondal, Haihong Hao

Published in: BioDrugs | Issue 3/2024

Login to get access

Abstract

Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system’s potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.
Literature
1.
2.
go back to reference Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet Lond Engl. 2022;399:629–55.CrossRef Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet Lond Engl. 2022;399:629–55.CrossRef
3.
go back to reference Murray, C. J. L. et al.Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet Lond Engl. 2022;399:629–55. Murray, C. J. L. et al.Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet Lond Engl. 2022;399:629–55.
4.
go back to reference Chung M, Yeh I, Sung L, Wu M, Chao Y, Ng I, et al. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng. 2017;114:172–83.PubMedCrossRef Chung M, Yeh I, Sung L, Wu M, Chao Y, Ng I, et al. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng. 2017;114:172–83.PubMedCrossRef
6.
go back to reference Shetty VP, Akshay SD, Rai P, Deekshit VK. Integrons as the potential targets for combating multidrug resistance in Enterobacteriaceae using CRISPR- Cas9 technique. J Appl Microbiol. 2023;134: lxad137.PubMedCrossRef Shetty VP, Akshay SD, Rai P, Deekshit VK. Integrons as the potential targets for combating multidrug resistance in Enterobacteriaceae using CRISPR- Cas9 technique. J Appl Microbiol. 2023;134: lxad137.PubMedCrossRef
7.
go back to reference Wu Z-Y, Huang Y-T, Chao W-C, Ho S-P, Cheng J-F, Liu P-Y. Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing. J Adv Res. 2019;18:61–9.PubMedPubMedCentralCrossRef Wu Z-Y, Huang Y-T, Chao W-C, Ho S-P, Cheng J-F, Liu P-Y. Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing. J Adv Res. 2019;18:61–9.PubMedPubMedCentralCrossRef
8.
go back to reference Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8:162–73.PubMedPubMedCentralCrossRef Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8:162–73.PubMedPubMedCentralCrossRef
9.
go back to reference Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various aspects of a gene editing system—crispr–cas9. Int J Mol Sci. 2020;21:9604.PubMedPubMedCentralCrossRef Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various aspects of a gene editing system—crispr–cas9. Int J Mol Sci. 2020;21:9604.PubMedPubMedCentralCrossRef
10.
go back to reference He Y-Z, Kuang X, Long T-F, Li G, Ren H, He B, et al. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. J Antimicrob Chemother. 2022;77:74–82.CrossRef He Y-Z, Kuang X, Long T-F, Li G, Ren H, He B, et al. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. J Antimicrob Chemother. 2022;77:74–82.CrossRef
12.
go back to reference Kim J-S, Cho D-H, Park M, Chung W-J, Shin D, Ko KS, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016;26:394–401.PubMedCrossRef Kim J-S, Cho D-H, Park M, Chung W-J, Shin D, Ko KS, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016;26:394–401.PubMedCrossRef
13.
go back to reference Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36:244–6.PubMedCrossRef Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36:244–6.PubMedCrossRef
14.
go back to reference Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–75.PubMedCrossRef Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–75.PubMedCrossRef
15.
go back to reference Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci. 2016;371:20150496.CrossRef Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci. 2016;371:20150496.CrossRef
16.
go back to reference Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat Struct Mol Biol. 2014;21:528–34.PubMedPubMedCentralCrossRef Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat Struct Mol Biol. 2014;21:528–34.PubMedPubMedCentralCrossRef
18.
go back to reference Teng M, Yao Y, Nair V, Luo J. Latest advances of virology research using CRISPR/Cas9-based gene-editing technology and its application to vaccine development. Viruses. 2021;13:779.PubMedPubMedCentralCrossRef Teng M, Yao Y, Nair V, Luo J. Latest advances of virology research using CRISPR/Cas9-based gene-editing technology and its application to vaccine development. Viruses. 2021;13:779.PubMedPubMedCentralCrossRef
20.
go back to reference Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353: aaf5573.PubMedPubMedCentralCrossRef Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353: aaf5573.PubMedPubMedCentralCrossRef
21.
go back to reference Alduhaidhawi AHM, AlHuchaimi SN, Al-Mayah TA, Al-Ouqaili MT, Alkafaas SS, Muthupandian S, et al. Prevalence of CRISPR-cas systems and their possible association with antibiotic resistance in Enterococcus faecalis and Enterococcus faecium collected from hospital wastewater. Infect Drug Resist. 2022;15:1143–54.PubMedPubMedCentralCrossRef Alduhaidhawi AHM, AlHuchaimi SN, Al-Mayah TA, Al-Ouqaili MT, Alkafaas SS, Muthupandian S, et al. Prevalence of CRISPR-cas systems and their possible association with antibiotic resistance in Enterococcus faecalis and Enterococcus faecium collected from hospital wastewater. Infect Drug Resist. 2022;15:1143–54.PubMedPubMedCentralCrossRef
22.
go back to reference Hullahalli K, Rodrigues M, Schmidt BD, Li X, Bhardwaj P, Palmer KL. Comparative analysis of the orphan CRISPR2 locus in 242 Enterococcus faecalis strains. PLoS One. 2015;10: e0138890.PubMedPubMedCentralCrossRef Hullahalli K, Rodrigues M, Schmidt BD, Li X, Bhardwaj P, Palmer KL. Comparative analysis of the orphan CRISPR2 locus in 242 Enterococcus faecalis strains. PLoS One. 2015;10: e0138890.PubMedPubMedCentralCrossRef
24.
go back to reference Burley KM, Sedgley CM. CRISPR-Cas, a prokaryotic adaptive immune system, in endodontic, oral, and multidrug-resistant hospital-acquired Enterococcus faecalis. J Endod. 2012;38:1511–5.PubMedCrossRef Burley KM, Sedgley CM. CRISPR-Cas, a prokaryotic adaptive immune system, in endodontic, oral, and multidrug-resistant hospital-acquired Enterococcus faecalis. J Endod. 2012;38:1511–5.PubMedCrossRef
26.
go back to reference Gholizadeh P, Aghazadeh M, Ghotaslou R, Rezaee MA, Pirzadeh T, Cui L, et al. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann Clin Microbiol Antimicrob. 2021;20:1–12.CrossRef Gholizadeh P, Aghazadeh M, Ghotaslou R, Rezaee MA, Pirzadeh T, Cui L, et al. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann Clin Microbiol Antimicrob. 2021;20:1–12.CrossRef
27.
go back to reference Zhou Y, Yang Y, Li X, Tian D, Ai W, Wang W, et al. Exploiting a conjugative endogenous CRISPR-Cas3 system to tackle multidrug-resistant Klebsiella pneumoniae. EBioMedicine. 2023;88: 104445.PubMedPubMedCentralCrossRef Zhou Y, Yang Y, Li X, Tian D, Ai W, Wang W, et al. Exploiting a conjugative endogenous CRISPR-Cas3 system to tackle multidrug-resistant Klebsiella pneumoniae. EBioMedicine. 2023;88: 104445.PubMedPubMedCentralCrossRef
28.
go back to reference Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 2011;30:1335–42.PubMedPubMedCentralCrossRef Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 2011;30:1335–42.PubMedPubMedCentralCrossRef
30.
go back to reference Selle K, Fletcher JR, Tuson H, Schmitt DS, McMillan L, Vridhambal GS, et al. In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials. MBio. 2020;11: e00019-20.PubMedPubMedCentralCrossRef Selle K, Fletcher JR, Tuson H, Schmitt DS, McMillan L, Vridhambal GS, et al. In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials. MBio. 2020;11: e00019-20.PubMedPubMedCentralCrossRef
31.
go back to reference Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci. 2015;112:7267–72.PubMedPubMedCentralCrossRef Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci. 2015;112:7267–72.PubMedPubMedCentralCrossRef
33.
go back to reference Hao M, He Y, Zhang H, Liao X-P, Liu Y-H, Sun J, et al. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2020;64:e00843-e920.PubMedPubMedCentralCrossRef Hao M, He Y, Zhang H, Liao X-P, Liu Y-H, Sun J, et al. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2020;64:e00843-e920.PubMedPubMedCentralCrossRef
34.
go back to reference Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–6.PubMedPubMedCentralCrossRef Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–6.PubMedPubMedCentralCrossRef
35.
go back to reference Shahriar SA, Islam MN, Chun CNW, Rahim MA, Paul NC, Uddain J, et al. Control of plant viral diseases by CRISPR/Cas9: resistance mechanisms, strategies and challenges in food crops. Plants. 2021;10:1264.PubMedPubMedCentralCrossRef Shahriar SA, Islam MN, Chun CNW, Rahim MA, Paul NC, Uddain J, et al. Control of plant viral diseases by CRISPR/Cas9: resistance mechanisms, strategies and challenges in food crops. Plants. 2021;10:1264.PubMedPubMedCentralCrossRef
36.
go back to reference Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, et al. CRISPR/Cas9: a powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci. 2020;263: 118525.PubMedPubMedCentralCrossRef Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, et al. CRISPR/Cas9: a powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci. 2020;263: 118525.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Hamilton TA, Pellegrino GM, Therrien JA, Ham DT, Bartlett PC, Karas BJ, et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat Commun. 2019;10:4544.PubMedPubMedCentralCrossRef Hamilton TA, Pellegrino GM, Therrien JA, Ham DT, Bartlett PC, Karas BJ, et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat Commun. 2019;10:4544.PubMedPubMedCentralCrossRef
39.
go back to reference Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, et al. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 2012;56:3568–75.PubMedPubMedCentralCrossRef Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, et al. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 2012;56:3568–75.PubMedPubMedCentralCrossRef
40.
go back to reference Aslam B, Rasool M, Idris A, Muzammil S, Alvi RF, Khurshid M, et al. CRISPR-Cas system: a potential alternative tool to cope antibiotic resistance. Antimicrob Resist Infect Control. 2020;9:131.PubMedPubMedCentralCrossRef Aslam B, Rasool M, Idris A, Muzammil S, Alvi RF, Khurshid M, et al. CRISPR-Cas system: a potential alternative tool to cope antibiotic resistance. Antimicrob Resist Infect Control. 2020;9:131.PubMedPubMedCentralCrossRef
41.
go back to reference Meeske AJ, Nakandakari-Higa S, Marraffini LA. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature. 2019;570:241–5.PubMedPubMedCentralCrossRef Meeske AJ, Nakandakari-Higa S, Marraffini LA. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature. 2019;570:241–5.PubMedPubMedCentralCrossRef
43.
go back to reference Kiga K, Tan X-E, Ibarra-Chávez R, Watanabe S, Aiba Y, Sato’o Y, et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun. 2020;11:2934.PubMedPubMedCentralCrossRef Kiga K, Tan X-E, Ibarra-Chávez R, Watanabe S, Aiba Y, Sato’o Y, et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun. 2020;11:2934.PubMedPubMedCentralCrossRef
44.
go back to reference Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel strategy to combat antibiotic resistance: a sight into the combination of CRISPR/Cas9 and nanoparticles. Pharmaceutics. 2021;13:352.PubMedPubMedCentralCrossRef Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel strategy to combat antibiotic resistance: a sight into the combination of CRISPR/Cas9 and nanoparticles. Pharmaceutics. 2021;13:352.PubMedPubMedCentralCrossRef
45.
go back to reference Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol. 2015;81:5103–14.PubMedPubMedCentralCrossRef Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol. 2015;81:5103–14.PubMedPubMedCentralCrossRef
47.
go back to reference Yang W, Yan J, Zhuang P, Ding T, Chen Y, Zhang Y, et al. Progress of delivery methods for CRISPR-Cas9. Expert Opin Drug Deliv. 2022;19:913–26.PubMedCrossRef Yang W, Yan J, Zhuang P, Ding T, Chen Y, Zhang Y, et al. Progress of delivery methods for CRISPR-Cas9. Expert Opin Drug Deliv. 2022;19:913–26.PubMedCrossRef
49.
go back to reference Wang Y, Qi T, Liu J, Yang Y, Wang Z, Wang Y, et al. A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing. Sci Adv. 2023;9: eabo6405.PubMedPubMedCentralCrossRef Wang Y, Qi T, Liu J, Yang Y, Wang Z, Wang Y, et al. A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing. Sci Adv. 2023;9: eabo6405.PubMedPubMedCentralCrossRef
50.
go back to reference Pantoja Angles A, Ali Z, Mahfouz M. CS-cells: a CRISPR-Cas12 DNA device to generate chromosome-shredded cells for efficient and safe molecular biomanufacturing. ACS Synth Biol. 2022;11:430–40.PubMedCrossRef Pantoja Angles A, Ali Z, Mahfouz M. CS-cells: a CRISPR-Cas12 DNA device to generate chromosome-shredded cells for efficient and safe molecular biomanufacturing. ACS Synth Biol. 2022;11:430–40.PubMedCrossRef
51.
go back to reference Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, et al. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med. 2022;8: e10381.PubMedPubMedCentralCrossRef Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, et al. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med. 2022;8: e10381.PubMedPubMedCentralCrossRef
52.
go back to reference Rodrigues M, McBride SW, Hullahalli K, Palmer KL, Duerkop BA. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob Agents Chemother. 2019;63:e01454-e1519.PubMedPubMedCentralCrossRef Rodrigues M, McBride SW, Hullahalli K, Palmer KL, Duerkop BA. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob Agents Chemother. 2019;63:e01454-e1519.PubMedPubMedCentralCrossRef
53.
go back to reference Nguyen GT, Dhingra Y, Sashital DG. Miniature CRISPR-Cas12 endonucleases–programmed DNA targeting in a smaller package. Curr Opin Struct Biol. 2022;77: 102466.PubMedPubMedCentralCrossRef Nguyen GT, Dhingra Y, Sashital DG. Miniature CRISPR-Cas12 endonucleases–programmed DNA targeting in a smaller package. Curr Opin Struct Biol. 2022;77: 102466.PubMedPubMedCentralCrossRef
54.
go back to reference Yeh T-K, Jean S-S, Lee Y-L, Lu M-C, Ko W-C, Lin H-J, et al. Bacteriophages and phage-delivered CRISPR-Cas system as antibacterial therapy. Int J Antimicrob Agents. 2022;59: 106475.PubMedCrossRef Yeh T-K, Jean S-S, Lee Y-L, Lu M-C, Ko W-C, Lin H-J, et al. Bacteriophages and phage-delivered CRISPR-Cas system as antibacterial therapy. Int J Antimicrob Agents. 2022;59: 106475.PubMedCrossRef
55.
go back to reference Lam KN, Spanogiannopoulos P, Soto-Perez P, Alexander M, Nalley MJ, Bisanz JE, et al. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 2021;37: 109930.PubMedPubMedCentralCrossRef Lam KN, Spanogiannopoulos P, Soto-Perez P, Alexander M, Nalley MJ, Bisanz JE, et al. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 2021;37: 109930.PubMedPubMedCentralCrossRef
56.
go back to reference Fage C, Lemire N, Moineau S. Delivery of CRISPR-Cas systems using phage-based vectors. Curr Opin Biotechnol. 2021;68:174–80.PubMedCrossRef Fage C, Lemire N, Moineau S. Delivery of CRISPR-Cas systems using phage-based vectors. Curr Opin Biotechnol. 2021;68:174–80.PubMedCrossRef
57.
go back to reference Deng H, Huang W, Zhang Z. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: progress and prospect. Nano Res. 2019;12:2437–50.CrossRef Deng H, Huang W, Zhang Z. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: progress and prospect. Nano Res. 2019;12:2437–50.CrossRef
58.
go back to reference Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, Garza-Rodríguez MDL, Barrera-Saldaña HA. Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases (Review). Int J Mol Med. 2019;43:1559–74.PubMedPubMedCentral Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, Garza-Rodríguez MDL, Barrera-Saldaña HA. Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases (Review). Int J Mol Med. 2019;43:1559–74.PubMedPubMedCentral
59.
go back to reference Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-based delivery of CRISPR/Cas9 genome-editing therapeutics. AAPS J. 2018;20:1–22.CrossRef Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-based delivery of CRISPR/Cas9 genome-editing therapeutics. AAPS J. 2018;20:1–22.CrossRef
60.
61.
go back to reference Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials. 2022;291: 121876.PubMedPubMedCentralCrossRef Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials. 2022;291: 121876.PubMedPubMedCentralCrossRef
62.
go back to reference Qin W, Wang H. Delivery of CRISPR-Cas9 into mouse zygotes by electroporation. Methods Mol Biol Clifton NJ. 2019;1874:179–90.CrossRef Qin W, Wang H. Delivery of CRISPR-Cas9 into mouse zygotes by electroporation. Methods Mol Biol Clifton NJ. 2019;1874:179–90.CrossRef
63.
go back to reference Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology. 2021;19:401.PubMedPubMedCentralCrossRef Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology. 2021;19:401.PubMedPubMedCentralCrossRef
64.
go back to reference Dhasmana N, Ram G, McAllister KN, Chupalova Y, Lopez P, Ross HF, et al. Dynamics of antibacterial drone establishment in Staphylococcus aureus: unexpected effects of antibiotic resistance genes. MBio. 2021;12:e02083-e2121.PubMedPubMedCentralCrossRef Dhasmana N, Ram G, McAllister KN, Chupalova Y, Lopez P, Ross HF, et al. Dynamics of antibacterial drone establishment in Staphylococcus aureus: unexpected effects of antibiotic resistance genes. MBio. 2021;12:e02083-e2121.PubMedPubMedCentralCrossRef
65.
go back to reference Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat. 2023;68: 100948.PubMedCrossRef Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat. 2023;68: 100948.PubMedCrossRef
66.
go back to reference Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—implications for human health and treatment perspectives. EMBO Rep. 2020;21: e51034.PubMedPubMedCentralCrossRef Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—implications for human health and treatment perspectives. EMBO Rep. 2020;21: e51034.PubMedPubMedCentralCrossRef
67.
go back to reference Senthilnathan R, Ilangovan I, Kunale M, Easwaran N, Ramamoorthy S, Veeramuthu A, et al. An update on CRISPR-Cas12 as a versatile tool in genome editing. Mol Biol Rep. 2023;50:2865–81.PubMedCrossRef Senthilnathan R, Ilangovan I, Kunale M, Easwaran N, Ramamoorthy S, Veeramuthu A, et al. An update on CRISPR-Cas12 as a versatile tool in genome editing. Mol Biol Rep. 2023;50:2865–81.PubMedCrossRef
69.
go back to reference Song X, Liu C, Wang N, Huang H, He S, Gong C, et al. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev. 2021;168:158–80.PubMedCrossRef Song X, Liu C, Wang N, Huang H, He S, Gong C, et al. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev. 2021;168:158–80.PubMedCrossRef
70.
go back to reference Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. 2020;13:45–61.PubMedPubMedCentralCrossRef Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. 2020;13:45–61.PubMedPubMedCentralCrossRef
71.
go back to reference Wang Z, Cui W. CRISPR-Cas system for biomedical diagnostic platforms. View. 2020;1:20200008.CrossRef Wang Z, Cui W. CRISPR-Cas system for biomedical diagnostic platforms. View. 2020;1:20200008.CrossRef
72.
go back to reference Tang Y, Gao L, Feng W, Guo C, Yang Q, Li F, et al. The CRISPR–Cas toolbox for analytical and diagnostic assay development. Chem Soc Rev. 2021;50:11844–69.PubMedCrossRef Tang Y, Gao L, Feng W, Guo C, Yang Q, Li F, et al. The CRISPR–Cas toolbox for analytical and diagnostic assay development. Chem Soc Rev. 2021;50:11844–69.PubMedCrossRef
73.
go back to reference Padmanaban V, Ranganathan UDK. CRISPR–Cas system and its use in the diagnosis of infectious diseases. Microbiol Res. 2022;263: 127100.PubMedCrossRef Padmanaban V, Ranganathan UDK. CRISPR–Cas system and its use in the diagnosis of infectious diseases. Microbiol Res. 2022;263: 127100.PubMedCrossRef
74.
go back to reference Quan J, Langelier C, Kuchta A, Batson J, Teyssier N, Lyden A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019;47:e83–e83.PubMedPubMedCentralCrossRef Quan J, Langelier C, Kuchta A, Batson J, Teyssier N, Lyden A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019;47:e83–e83.PubMedPubMedCentralCrossRef
75.
go back to reference Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:1–12.CrossRef Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:1–12.CrossRef
76.
go back to reference Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Anal Chem. 2023;160: 116980.CrossRef Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Anal Chem. 2023;160: 116980.CrossRef
77.
78.
79.
go back to reference Arizti-Sanz J, Freije CA, Stanton AC, Petros BA, Boehm CK, Siddiqui S, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020;11:5921.PubMedPubMedCentralCrossRef Arizti-Sanz J, Freije CA, Stanton AC, Petros BA, Boehm CK, Siddiqui S, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020;11:5921.PubMedPubMedCentralCrossRef
80.
go back to reference Bonini A, Poma N, Vivaldi F, Biagini D, Bottai D, Tavanti A, et al. A label-free impedance biosensing assay based on CRISPR/Cas12a collateral activity for bacterial DNA detection. J Pharm Biomed Anal. 2021;204: 114268.PubMedCrossRef Bonini A, Poma N, Vivaldi F, Biagini D, Bottai D, Tavanti A, et al. A label-free impedance biosensing assay based on CRISPR/Cas12a collateral activity for bacterial DNA detection. J Pharm Biomed Anal. 2021;204: 114268.PubMedCrossRef
82.
go back to reference Nguyen LT, Macaluso NC, Pizzano BLM, Cash MN, Spacek J, Karasek J, et al. A thermostable Cas12b from Brevibacillus leverages one-pot detection of SARS-CoV-2 variants of concern. MedRxiv Prepr Serv Health Sci. 2021;2021.10.15.21265066. Nguyen LT, Macaluso NC, Pizzano BLM, Cash MN, Spacek J, Karasek J, et al. A thermostable Cas12b from Brevibacillus leverages one-pot detection of SARS-CoV-2 variants of concern. MedRxiv Prepr Serv Health Sci. 2021;2021.10.15.21265066.
83.
go back to reference Ge X, Meng T, Tan X, Wei Y, Tao Z, Yang Z, et al. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosens Bioelectron. 2021;189: 113350.PubMedCrossRef Ge X, Meng T, Tan X, Wei Y, Tao Z, Yang Z, et al. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosens Bioelectron. 2021;189: 113350.PubMedCrossRef
84.
go back to reference Wei Y, Tao Z, Wan L, Zong C, Wu J, Tan X, et al. Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Biosens Bioelectron. 2022;211: 114282.PubMedCrossRef Wei Y, Tao Z, Wan L, Zong C, Wu J, Tan X, et al. Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Biosens Bioelectron. 2022;211: 114282.PubMedCrossRef
85.
go back to reference Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother. 2023;68: 100948. Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother. 2023;68: 100948.
86.
go back to reference Huang M, Zhou X, Wang H, Xing D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem. 2018;90:2193–200.PubMedCrossRef Huang M, Zhou X, Wang H, Xing D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem. 2018;90:2193–200.PubMedCrossRef
87.
go back to reference Xiao G, Zhang S, Liang Z, Li G, Fang M, Liu Y, et al. Identification of Mycobacterium abscessus species and subspecies using the Cas12a/sgRNA-based nucleic acid detection platform. Eur J Clin Microbiol Infect Dis. 2020;39:551–8.PubMedCrossRef Xiao G, Zhang S, Liang Z, Li G, Fang M, Liu Y, et al. Identification of Mycobacterium abscessus species and subspecies using the Cas12a/sgRNA-based nucleic acid detection platform. Eur J Clin Microbiol Infect Dis. 2020;39:551–8.PubMedCrossRef
89.
go back to reference Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, et al. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 2012;56:3568–75.PubMedPubMedCentralCrossRef Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, et al. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 2012;56:3568–75.PubMedPubMedCentralCrossRef
90.
go back to reference Sun Q, Wang Y, Dong N, Shen L, Zhou H, Hu Y, et al. Application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2019;63:e00113-e119.PubMedPubMedCentralCrossRef Sun Q, Wang Y, Dong N, Shen L, Zhou H, Hu Y, et al. Application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2019;63:e00113-e119.PubMedPubMedCentralCrossRef
91.
go back to reference Wu X, Zha J, Koffas MA, Dordick JS. Reducing Staphylococcus aureus resistance to lysostaphin using CRISPR-dCas9. Biotechnol Bioeng. 2019;116:3149–59.PubMedCrossRef Wu X, Zha J, Koffas MA, Dordick JS. Reducing Staphylococcus aureus resistance to lysostaphin using CRISPR-dCas9. Biotechnol Bioeng. 2019;116:3149–59.PubMedCrossRef
92.
go back to reference Ram G, Ross HF, Novick RP, Rodriguez-Pagan I, Jiang D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat Biotechnol. 2018;36:971–6.PubMedPubMedCentralCrossRef Ram G, Ross HF, Novick RP, Rodriguez-Pagan I, Jiang D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat Biotechnol. 2018;36:971–6.PubMedPubMedCentralCrossRef
93.
go back to reference Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep. 2017;7:44929.PubMedPubMedCentralCrossRef Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep. 2017;7:44929.PubMedPubMedCentralCrossRef
94.
go back to reference Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem. 2017;28:957–67.PubMedCrossRef Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem. 2017;28:957–67.PubMedCrossRef
95.
go back to reference Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146–50.PubMedPubMedCentralCrossRef Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146–50.PubMedPubMedCentralCrossRef
96.
go back to reference Walflor HSM, Lucena ARC, Tuon FF, Medeiros LCS, Faoro H. Resensitization of fosfomycin-resistant Escherichia coli using the CRISPR system. Int J Mol Sci. 2022;23:9175.PubMedPubMedCentralCrossRef Walflor HSM, Lucena ARC, Tuon FF, Medeiros LCS, Faoro H. Resensitization of fosfomycin-resistant Escherichia coli using the CRISPR system. Int J Mol Sci. 2022;23:9175.PubMedPubMedCentralCrossRef
97.
go back to reference Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system. Infect Drug Resist. 2020;13:1171–8.PubMedPubMedCentralCrossRef Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system. Infect Drug Resist. 2020;13:1171–8.PubMedPubMedCentralCrossRef
98.
go back to reference Reuter A, Hilpert C, Dedieu-Berne A, Lematre S, Gueguen E, Launay G, et al. Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res. 2021;49:3584–98.PubMedPubMedCentralCrossRef Reuter A, Hilpert C, Dedieu-Berne A, Lematre S, Gueguen E, Launay G, et al. Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res. 2021;49:3584–98.PubMedPubMedCentralCrossRef
99.
go back to reference Tagliaferri TL, Guimarães NR, Pereira MPM, Vilela LFF, Horz H-P, Dos Santos SG, et al. Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of Enterobacteriaceae. Front Microbiol. 2020;11:578.PubMedPubMedCentralCrossRef Tagliaferri TL, Guimarães NR, Pereira MPM, Vilela LFF, Horz H-P, Dos Santos SG, et al. Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of Enterobacteriaceae. Front Microbiol. 2020;11:578.PubMedPubMedCentralCrossRef
100.
go back to reference Li P, Wan P, Zhao R, Chen J, Li X, Li J, et al. Targeted elimination of blaNDM-5 gene in Escherichia coli by conjugative CRISPR-Cas9 system. Infect Drug Resist. 2022;15:1707–16.PubMedPubMedCentralCrossRef Li P, Wan P, Zhao R, Chen J, Li X, Li J, et al. Targeted elimination of blaNDM-5 gene in Escherichia coli by conjugative CRISPR-Cas9 system. Infect Drug Resist. 2022;15:1707–16.PubMedPubMedCentralCrossRef
101.
102.
go back to reference Liu H, Li H, Liang Y, Du X, Yang C, Yang L, et al. Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Theranostics. 2020;10:6310–21.PubMedPubMedCentralCrossRef Liu H, Li H, Liang Y, Du X, Yang C, Yang L, et al. Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Theranostics. 2020;10:6310–21.PubMedPubMedCentralCrossRef
103.
go back to reference Wang T, Liu Y, Sun H-H, Yin B-C, Ye B-C. An RNA-guided Cas9 nickase-based method for universal isothermal DNA amplification. Angew Chem. 2019;131:5436–40.CrossRef Wang T, Liu Y, Sun H-H, Yin B-C, Ye B-C. An RNA-guided Cas9 nickase-based method for universal isothermal DNA amplification. Angew Chem. 2019;131:5436–40.CrossRef
104.
go back to reference Guk K, Keem JO, Hwang SG, Kim H, Kang T, Lim E-K, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens Bioelectron. 2017;95:67–71.PubMedCrossRef Guk K, Keem JO, Hwang SG, Kim H, Kang T, Lim E-K, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens Bioelectron. 2017;95:67–71.PubMedCrossRef
105.
go back to reference Wang X, Xiong E, Tian T, Cheng M, Lin W, Wang H, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano. 2020;14:2497–508.PubMedCrossRef Wang X, Xiong E, Tian T, Cheng M, Lin W, Wang H, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano. 2020;14:2497–508.PubMedCrossRef
106.
go back to reference You Y, Zhang P, Wu G, Tan Y, Zhao Y, Cao S, et al. Highly specific and sensitive detection of Yersinia pestis by portable Cas12a-UPTLFA platform. Front Microbiol. 2021;12: 700016.PubMedPubMedCentralCrossRef You Y, Zhang P, Wu G, Tan Y, Zhao Y, Cao S, et al. Highly specific and sensitive detection of Yersinia pestis by portable Cas12a-UPTLFA platform. Front Microbiol. 2021;12: 700016.PubMedPubMedCentralCrossRef
107.
go back to reference Ai J-W, Zhou X, Xu T, Yang M, Chen Y, He G-Q, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg Microbes Infect. 2019;8:1361–9.PubMedPubMedCentralCrossRef Ai J-W, Zhou X, Xu T, Yang M, Chen Y, He G-Q, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg Microbes Infect. 2019;8:1361–9.PubMedPubMedCentralCrossRef
108.
go back to reference Wang Y, Liang X, Xu J, Nan L, Liu F, Duan G, et al. Rapid and ultrasensitive detection of methicillin-resistant Staphylococcus aureus based on CRISPR-Cas12a combined with recombinase-aided amplification. Front Microbiol. 2022;13: 903298.PubMedPubMedCentralCrossRef Wang Y, Liang X, Xu J, Nan L, Liu F, Duan G, et al. Rapid and ultrasensitive detection of methicillin-resistant Staphylococcus aureus based on CRISPR-Cas12a combined with recombinase-aided amplification. Front Microbiol. 2022;13: 903298.PubMedPubMedCentralCrossRef
109.
go back to reference Liu X, Qiu X, Xu S, Che Y, Han L, Kang Y, et al. A CRISPR-Cas12a-assisted fluorescence platform for rapid and accurate detection of Nocardia cyriacigeorgica. Front Cell Infect Microbiol. 2022;12: 835213.PubMedPubMedCentralCrossRef Liu X, Qiu X, Xu S, Che Y, Han L, Kang Y, et al. A CRISPR-Cas12a-assisted fluorescence platform for rapid and accurate detection of Nocardia cyriacigeorgica. Front Cell Infect Microbiol. 2022;12: 835213.PubMedPubMedCentralCrossRef
110.
go back to reference Wang Y, Ke Y, Liu W, Sun Y, Ding X. A one-pot toolbox based on Cas12a/crRNA enables rapid foodborne pathogen detection at attomolar level. Acs Sens. 2020;5:1427–35.PubMedCrossRef Wang Y, Ke Y, Liu W, Sun Y, Ding X. A one-pot toolbox based on Cas12a/crRNA enables rapid foodborne pathogen detection at attomolar level. Acs Sens. 2020;5:1427–35.PubMedCrossRef
111.
go back to reference Lu P, Chen J, Li Z, Li Z, Zhang J, Kan B, et al. Visual identification and serotyping of toxigenic Vibrio cholerae serogroups O1 and O139 with CARID. Front Cell Infect Microbiol. 2022;12: 863435.PubMedPubMedCentralCrossRef Lu P, Chen J, Li Z, Li Z, Zhang J, Kan B, et al. Visual identification and serotyping of toxigenic Vibrio cholerae serogroups O1 and O139 with CARID. Front Cell Infect Microbiol. 2022;12: 863435.PubMedPubMedCentralCrossRef
112.
go back to reference Xiao X, Lin Z, Huang X, Lu J, Zhou Y, Zheng L, et al. Rapid and sensitive detection of Vibrio vulnificus using CRISPR/Cas12a combined with a recombinase-aided amplification assay. Front Microbiol. 2021;12: 767315.PubMedPubMedCentralCrossRef Xiao X, Lin Z, Huang X, Lu J, Zhou Y, Zheng L, et al. Rapid and sensitive detection of Vibrio vulnificus using CRISPR/Cas12a combined with a recombinase-aided amplification assay. Front Microbiol. 2021;12: 767315.PubMedPubMedCentralCrossRef
113.
go back to reference Qiu E, Jin S, Xiao Z, Chen Q, Wang Q, Liu H, et al. CRISPR-based Detection of Helicobacter pylori in Stool Samples. Helicobacter. 2021;26: e12828.PubMedCrossRef Qiu E, Jin S, Xiao Z, Chen Q, Wang Q, Liu H, et al. CRISPR-based Detection of Helicobacter pylori in Stool Samples. Helicobacter. 2021;26: e12828.PubMedCrossRef
114.
go back to reference Li C, Chen X, Wen R, Ma P, Gu K, Li C, et al. Immunocapture magnetic beads enhanced the LAMP-CRISPR/Cas12a method for the sensitive, specific, and visual detection of Campylobacter jejuni. Biosensors. 2022;12:154.PubMedPubMedCentralCrossRef Li C, Chen X, Wen R, Ma P, Gu K, Li C, et al. Immunocapture magnetic beads enhanced the LAMP-CRISPR/Cas12a method for the sensitive, specific, and visual detection of Campylobacter jejuni. Biosensors. 2022;12:154.PubMedPubMedCentralCrossRef
115.
go back to reference Wu H, Cao X, Meng Y, Richards D, Wu J, Ye Z, et al. DropCRISPR: a LAMP-Cas12a based digital method for ultrasensitive detection of nucleic acid. Biosens Bioelectron. 2022;211: 114377.PubMedCrossRef Wu H, Cao X, Meng Y, Richards D, Wu J, Ye Z, et al. DropCRISPR: a LAMP-Cas12a based digital method for ultrasensitive detection of nucleic acid. Biosens Bioelectron. 2022;211: 114377.PubMedCrossRef
116.
go back to reference Schultzhaus Z, Wang Z, Stenger D. Systematic analysis, identification, and use of CRISPR/Cas13a–associated crRNAs for sensitive and specific detection of the lcrV gene of Yersinia pestis. Diagn Microbiol Infect Dis. 2021;99: 115275.PubMedCrossRef Schultzhaus Z, Wang Z, Stenger D. Systematic analysis, identification, and use of CRISPR/Cas13a–associated crRNAs for sensitive and specific detection of the lcrV gene of Yersinia pestis. Diagn Microbiol Infect Dis. 2021;99: 115275.PubMedCrossRef
117.
go back to reference Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42.PubMedPubMedCentralCrossRef Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42.PubMedPubMedCentralCrossRef
118.
go back to reference Zhou J, Yin L, Dong Y, Peng L, Liu G, Man S, et al. CRISPR-Cas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples. Anal Chim Acta. 2020;1127:225–33.PubMedCrossRef Zhou J, Yin L, Dong Y, Peng L, Liu G, Man S, et al. CRISPR-Cas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples. Anal Chim Acta. 2020;1127:225–33.PubMedCrossRef
120.
go back to reference Gao S, Liu J, Li Z, Ma Y, Wang J. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a. J Food Sci. 2021;86:2615–25.PubMedCrossRef Gao S, Liu J, Li Z, Ma Y, Wang J. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a. J Food Sci. 2021;86:2615–25.PubMedCrossRef
121.
go back to reference Song F, Wei Y, Wang P, Ge X, Li C, Wang A, et al. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. Biosens Bioelectron. 2021;185: 113262.PubMedCrossRef Song F, Wei Y, Wang P, Ge X, Li C, Wang A, et al. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. Biosens Bioelectron. 2021;185: 113262.PubMedCrossRef
123.
go back to reference Chinese Medical Association. Species-specific Bacterial Detector for Fast Pathogen Diagnosis of Severe Pneumonia Patients in Intensive Care Uint: a Multicentre, Randomised Controlled Trial [Internet]. clinicaltrials.gov; 2022 May. Report No.: NCT05143593. Available from: https://clinicaltrials.gov/study/NCT05143593 Chinese Medical Association. Species-specific Bacterial Detector for Fast Pathogen Diagnosis of Severe Pneumonia Patients in Intensive Care Uint: a Multicentre, Randomised Controlled Trial [Internet]. clinicaltrials.gov; 2022 May. Report No.: NCT05143593. Available from: https://​clinicaltrials.​gov/​study/​NCT05143593
127.
go back to reference Children’s Hospital of Fudan University. Establishment a Nucleic Acid Rapid Detection Technology Platform for Detecting Pathogenic Bordetella and Its Drug Resistance Genes [Internet]. clinicaltrials.gov; 2022 Sep. Report No.: NCT04535505. Available from: https://clinicaltrials.gov/study/NCT04535505 Children’s Hospital of Fudan University. Establishment a Nucleic Acid Rapid Detection Technology Platform for Detecting Pathogenic Bordetella and Its Drug Resistance Genes [Internet]. clinicaltrials.gov; 2022 Sep. Report No.: NCT04535505. Available from: https://​clinicaltrials.​gov/​study/​NCT04535505
Metadata
Title
CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance
Authors
Muhammad Shahzad Rafiq
Muhammad AbuBakar Shabbir
Ahmed Raza
Shoaib Irshad
Andleeb Asghar
Muhammad Kashif Maan
Mushtaq Ahmed Gondal
Haihong Hao
Publication date
11-04-2024
Publisher
Springer International Publishing
Keyword
Antibiotic
Published in
BioDrugs / Issue 3/2024
Print ISSN: 1173-8804
Electronic ISSN: 1179-190X
DOI
https://doi.org/10.1007/s40259-024-00656-3