Skip to main content
Top
Published in:

Open Access 01-12-2024 | Research

Anomaly-based threat detection in smart health using machine learning

Authors: Muntaha Tabassum, Saba Mahmood, Amal Bukhari, Bader Alshemaimri, Ali Daud, Fatima Khalique

Published in: BMC Medical Informatics and Decision Making | Issue 1/2024

Login to get access

Abstract

Background

Anomaly detection is crucial in healthcare data due to challenges associated with the integration of smart technologies and healthcare. Anomaly in electronic health record can be associated with an insider trying to access and manipulate the data. This article focuses around the anomalies under different contexts.

Methodology

This research has proposed methodology to secure Electronic Health Records (EHRs) within a complex environment. We have employed a systematic approach encompassing data preprocessing, labeling, modeling, and evaluation. Anomalies are not labelled thus a mechanism is required that predicts them with greater accuracy and less false positive results. This research utilized unsupervised machine learning algorithms that includes Isolation Forest and Local Outlier Factor clustering algorithms. By calculating anomaly scores and validating clustering through metrics like the Silhouette Score and Dunn Score, we enhanced the capacity to secure sensitive healthcare data evolving digital threats. Three variations of Isolation Forest (IForest)models (SVM, Decision Tree, and Random Forest) and three variations of Local Outlier Factor (LOF) models (SVM, Decision Tree, and Random Forest) are evaluated based on accuracy, sensitivity, specificity, and F1 Score.

Results

Isolation Forest SVM achieves the highest accuracy of 99.21%, high sensitivity (99.75%) and specificity (99.32%), and a commendable F1 Score of 98.72%. The Isolation Forest Decision Tree also performs well with an accuracy of 98.92% and an F1 Score of 99.35%. However, the Isolation Forest Random Forest exhibits lower specificity (72.84%) than the other models.

Conclusion

The experimental results reveal that Isolation Forest SVM emerges as the top performer showcasing the effectiveness of these models in anomaly detection tasks. The proposed methodology utilizing isolation forest and SVM produced better results by detecting anomalies with less false positives in this specific EHR of a hospital in North England. Furthermore the proposal is also able to identify new contextual anomalies that were not identified in the baseline methodology.
Literature
1.
go back to reference Ristvej J, Lacinák M, Ondrejka R. On smart city and safe city concepts. Mob Netw Appl. 2020;25:836–45.CrossRef Ristvej J, Lacinák M, Ondrejka R. On smart city and safe city concepts. Mob Netw Appl. 2020;25:836–45.CrossRef
2.
go back to reference Galvão YM, Castro L, Ferreira J, Neto FBdL, Fagundes RAdA, Fernandes BJ. Anomaly Detection in Smart Houses for Healthcare: Recent Advances, and Future Perspectives. SN Comput Sci. 2024;5(1):136. Galvão YM, Castro L, Ferreira J, Neto FBdL, Fagundes RAdA, Fernandes BJ. Anomaly Detection in Smart Houses for Healthcare: Recent Advances, and Future Perspectives. SN Comput Sci. 2024;5(1):136.
3.
go back to reference Heekin AM, Kontor J, Sax HC, Keller MS, Wellington A, Weingarten S. Choosing Wisely clinical decision support adherence and associated inpatient outcomes. Am J Manage Care. 2018;24(8):361. Heekin AM, Kontor J, Sax HC, Keller MS, Wellington A, Weingarten S. Choosing Wisely clinical decision support adherence and associated inpatient outcomes. Am J Manage Care. 2018;24(8):361.
4.
go back to reference Hoffman SAE. Cybersecurity Threats in Healthcare Organizations:: Exposing Vulnerabilities in the Healthcare Information Infrastructure. World Libr. 2020;24(1). Hoffman SAE. Cybersecurity Threats in Healthcare Organizations:: Exposing Vulnerabilities in the Healthcare Information Infrastructure. World Libr. 2020;24(1).
5.
go back to reference El-Bakkouri N, Mazri T. Security Threats in Smart Healthcare. Int Arch Photogramm Remote Sens Spat Inf Sci. 2020;44:209–14.CrossRef El-Bakkouri N, Mazri T. Security Threats in Smart Healthcare. Int Arch Photogramm Remote Sens Spat Inf Sci. 2020;44:209–14.CrossRef
6.
go back to reference Kavitha M, Srinivas P, Kalyampudi PL, Srinivasulu S, et al. Machine learning techniques for anomaly detection in smart healthcare. In: 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE; 2021. pp. 1350–1356. Kavitha M, Srinivas P, Kalyampudi PL, Srinivasulu S, et al. Machine learning techniques for anomaly detection in smart healthcare. In: 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE; 2021. pp. 1350–1356.
7.
go back to reference Yin C, Xiong Z, Chen H, Wang J, Cooper D, David B. A literature survey on smart cities. Sci China Inf Sci. 2015;58(10):1–18.CrossRef Yin C, Xiong Z, Chen H, Wang J, Cooper D, David B. A literature survey on smart cities. Sci China Inf Sci. 2015;58(10):1–18.CrossRef
8.
go back to reference Batty M, Axhausen KW, Giannotti F, Pozdnoukhov A, Bazzani A, Wachowicz M, et al. Smart cities of the future. Eur Phys J Spec Top. 2012;214:481–518.CrossRef Batty M, Axhausen KW, Giannotti F, Pozdnoukhov A, Bazzani A, Wachowicz M, et al. Smart cities of the future. Eur Phys J Spec Top. 2012;214:481–518.CrossRef
9.
go back to reference Ruohomaa H, Salminen V, Kunttu I. Towards a smart city concept in small cities. Technol Innov Manag Rev. 2019;9:5–14. Ruohomaa H, Salminen V, Kunttu I. Towards a smart city concept in small cities. Technol Innov Manag Rev. 2019;9:5–14.
10.
go back to reference Ruokolainen J, Nätti S, Juutinen M, Puustinen J, Holm A, Vehkaoja A, et al. Digital healthcare platform ecosystem design: A case study of an ecosystem for Parkinson’s disease patients. Technovation. 2023;120:102551.CrossRef Ruokolainen J, Nätti S, Juutinen M, Puustinen J, Holm A, Vehkaoja A, et al. Digital healthcare platform ecosystem design: A case study of an ecosystem for Parkinson’s disease patients. Technovation. 2023;120:102551.CrossRef
11.
go back to reference Herman H, Grobbelaar SS, Pistorius C. The design and development of technology platforms in a developing country healthcare context from an ecosystem perspective. BMC Med Inform Dec Making. 2020;20:1–24. Herman H, Grobbelaar SS, Pistorius C. The design and development of technology platforms in a developing country healthcare context from an ecosystem perspective. BMC Med Inform Dec Making. 2020;20:1–24.
12.
go back to reference Newaz AI, Sikder AK, Rahman MA, Uluagac AS. Healthguard: A machine learning-based security framework for smart healthcare systems. In: 2019 sixth international conference on social networks analysis, management and security (SNAMS). IEEE; 2019. pp. 389–96. Newaz AI, Sikder AK, Rahman MA, Uluagac AS. Healthguard: A machine learning-based security framework for smart healthcare systems. In: 2019 sixth international conference on social networks analysis, management and security (SNAMS). IEEE; 2019. pp. 389–96.
13.
go back to reference Masood I, Wang Y, Daud A, Aljohani NR, Dawood H. Towards smart healthcare: patient data privacy and security in sensor-cloud infrastructure. Wirel Commun Mob Comput. 2018;2018(1):2143897.CrossRef Masood I, Wang Y, Daud A, Aljohani NR, Dawood H. Towards smart healthcare: patient data privacy and security in sensor-cloud infrastructure. Wirel Commun Mob Comput. 2018;2018(1):2143897.CrossRef
14.
go back to reference Tian S, Yang W, Le Grange JM, Wang P, Huang W, Ye Z. Smart healthcare: making medical care more intelligent. Glob Health J. 2019;3(3):62–5.CrossRef Tian S, Yang W, Le Grange JM, Wang P, Huang W, Ye Z. Smart healthcare: making medical care more intelligent. Glob Health J. 2019;3(3):62–5.CrossRef
15.
go back to reference Yin H, Akmandor AO, Mosenia A, Jha NK, et al. Smart healthcare. Found Trends® Electron Des Autom. 2018;12(4):401–66. Yin H, Akmandor AO, Mosenia A, Jha NK, et al. Smart healthcare. Found Trends® Electron Des Autom. 2018;12(4):401–66.
16.
go back to reference Alharbey R, Kim JI, Daud A, Song M, Alshdadi AA, Hayat MK. Indexing important drugs from medical literature. Scientometrics. 2022;127(5):2661–81.CrossRef Alharbey R, Kim JI, Daud A, Song M, Alshdadi AA, Hayat MK. Indexing important drugs from medical literature. Scientometrics. 2022;127(5):2661–81.CrossRef
17.
go back to reference Poongodi M, Sharma A, Hamdi M, Maode M, Chilamkurti N. Smart healthcare in smart cities: wireless patient monitoring system using IoT. J Supercomput. 2021;77:12230–55. Poongodi M, Sharma A, Hamdi M, Maode M, Chilamkurti N. Smart healthcare in smart cities: wireless patient monitoring system using IoT. J Supercomput. 2021;77:12230–55.
18.
go back to reference Tian YJ, Felber NA, Pageau F, Schwab DR, Wangmo T. Benefits and barriers associated with the use of smart home health technologies in the care of older persons: a systematic review. BMC Geriatr. 2024;24(1):152.PubMedPubMedCentralCrossRef Tian YJ, Felber NA, Pageau F, Schwab DR, Wangmo T. Benefits and barriers associated with the use of smart home health technologies in the care of older persons: a systematic review. BMC Geriatr. 2024;24(1):152.PubMedPubMedCentralCrossRef
19.
go back to reference Abbas T, Haider AK, Kanwal K, Daud A, Irfan M, Bukhari A, et al. IoMT-Based Healthcare Systems: A Review. Comput Syst Sci Eng. 2024;48(4):871–95. Abbas T, Haider AK, Kanwal K, Daud A, Irfan M, Bukhari A, et al. IoMT-Based Healthcare Systems: A Review. Comput Syst Sci Eng. 2024;48(4):871–95.
20.
go back to reference Kamruzzaman M. New opportunities, challenges, and applications of edge-AI for connected healthcare in smart cities. In: 2021 IEEE Globecom Workshops (GC Wkshps). IEEE; 2021. pp. 1–6. Kamruzzaman M. New opportunities, challenges, and applications of edge-AI for connected healthcare in smart cities. In: 2021 IEEE Globecom Workshops (GC Wkshps). IEEE; 2021. pp. 1–6.
21.
go back to reference Ullah Z, Al-Turjman F, Mostarda L, Gagliardi R. Applications of artificial intelligence and machine learning in smart cities. Comput Commun. 2020;154:313–23.CrossRef Ullah Z, Al-Turjman F, Mostarda L, Gagliardi R. Applications of artificial intelligence and machine learning in smart cities. Comput Commun. 2020;154:313–23.CrossRef
22.
go back to reference Alzaabi FR, Mehmood A. A review of recent advances, challenges, and opportunities in malicious insider threat detection using machine learning methods. IEEE Access. 2024;12:30907–27.CrossRef Alzaabi FR, Mehmood A. A review of recent advances, challenges, and opportunities in malicious insider threat detection using machine learning methods. IEEE Access. 2024;12:30907–27.CrossRef
23.
go back to reference Tn N, Pramod D. Insider intrusion detection techniques: A state-of-the-art review. J Comput Inf Syst. 2024;64(1):106–23. Tn N, Pramod D. Insider intrusion detection techniques: A state-of-the-art review. J Comput Inf Syst. 2024;64(1):106–23.
24.
go back to reference Xiao J, Yang L, Zhong F, Wang X, Chen H, Li D. Robust anomaly-based insider threat detection using graph neural network. IEEE Trans Netw Serv Manag. 2022;20(3):3717–33. Xiao J, Yang L, Zhong F, Wang X, Chen H, Li D. Robust anomaly-based insider threat detection using graph neural network. IEEE Trans Netw Serv Manag. 2022;20(3):3717–33.
25.
go back to reference Kumar GS, Premalatha K. STIF: Intuitionistic fuzzy Gaussian membership function with statistical transformation weight of evidence and information value for private information preservation. Distrib Parallel Databases. 2023;41(3):233–66.CrossRef Kumar GS, Premalatha K. STIF: Intuitionistic fuzzy Gaussian membership function with statistical transformation weight of evidence and information value for private information preservation. Distrib Parallel Databases. 2023;41(3):233–66.CrossRef
26.
go back to reference Kumar GS, Premalatha K, Maheshwari GU, Kanna PR, Vijaya G, Nivaashini M. Differential privacy scheme using Laplace mechanism and statistical method computation in deep neural network for privacy preservation. Eng Appl Artif Intell. 2024;128:107399.CrossRef Kumar GS, Premalatha K, Maheshwari GU, Kanna PR, Vijaya G, Nivaashini M. Differential privacy scheme using Laplace mechanism and statistical method computation in deep neural network for privacy preservation. Eng Appl Artif Intell. 2024;128:107399.CrossRef
27.
go back to reference Hayat MK, Daud A, Banjar A, Alharbey R, Bukhari A. A deep co-evolution architecture for anomaly detection in dynamic networks. Multimed Tools Appl. 2024;83(14):40489–508.CrossRef Hayat MK, Daud A, Banjar A, Alharbey R, Bukhari A. A deep co-evolution architecture for anomaly detection in dynamic networks. Multimed Tools Appl. 2024;83(14):40489–508.CrossRef
28.
go back to reference Hayat MK, Daud A. Anomaly detection in heterogeneous bibliographic information networks using co-evolution pattern mining. Scientometrics. 2017;113(1):149–75.CrossRef Hayat MK, Daud A. Anomaly detection in heterogeneous bibliographic information networks using co-evolution pattern mining. Scientometrics. 2017;113(1):149–75.CrossRef
29.
go back to reference Asha S, Shanmugapriya D, Padmavathi G. Malicious insider threat detection using variation of sampling methods for anomaly detection in cloud environment. Comput Electr Eng. 2023;105:108519.CrossRef Asha S, Shanmugapriya D, Padmavathi G. Malicious insider threat detection using variation of sampling methods for anomaly detection in cloud environment. Comput Electr Eng. 2023;105:108519.CrossRef
30.
go back to reference Wang E, Li Q, Zhao S, Han X. Anomaly-Based Insider Threat Detection via Hierarchical Information Fusion. In: International Conference on Artificial Neural Networks. Springer; 2023. pp. 13–25. Wang E, Li Q, Zhao S, Han X. Anomaly-Based Insider Threat Detection via Hierarchical Information Fusion. In: International Conference on Artificial Neural Networks. Springer; 2023. pp. 13–25.
31.
go back to reference Hurst W, Tekinerdogan B, Alskaif T, Boddy A, Shone N. Securing electronic health records against insider-threats: a supervised machine learning approach. Smart Health. 2022;26:100354.CrossRef Hurst W, Tekinerdogan B, Alskaif T, Boddy A, Shone N. Securing electronic health records against insider-threats: a supervised machine learning approach. Smart Health. 2022;26:100354.CrossRef
32.
33.
go back to reference Evans RS. Electronic health records: then, now, and in the future. Yearb Med Inform. 2016;25(S 01):S48–61. Evans RS. Electronic health records: then, now, and in the future. Yearb Med Inform. 2016;25(S 01):S48–61.
34.
go back to reference Cowie MR, Blomster JI, Curtis LH, Duclaux S, Ford I, Fritz F, et al. Electronic health records to facilitate clinical research. Clin Res Cardiol. 2017;106:1–9.PubMedCrossRef Cowie MR, Blomster JI, Curtis LH, Duclaux S, Ford I, Fritz F, et al. Electronic health records to facilitate clinical research. Clin Res Cardiol. 2017;106:1–9.PubMedCrossRef
35.
36.
go back to reference Jacquemard T, Doherty CP, Fitzsimons MB. The anatomy of electronic patient record ethics: a framework to guide design, development, implementation, and use. BMC Med Ethics. 2021;22(1):1–14.CrossRef Jacquemard T, Doherty CP, Fitzsimons MB. The anatomy of electronic patient record ethics: a framework to guide design, development, implementation, and use. BMC Med Ethics. 2021;22(1):1–14.CrossRef
37.
go back to reference Cecil E, Dewa L, Ma R, Majeed A, Aylin P. RF20 Primary health care professionals views of reminders in electronic patient records. J Epidemiol Community Health. 2019;73(Suppl 1):A64. Cecil E, Dewa L, Ma R, Majeed A, Aylin P. RF20 Primary health care professionals views of reminders in electronic patient records. J Epidemiol Community Health. 2019;73(Suppl 1):A64.
38.
go back to reference Menon AK, Jiang X, Kim J, Vaidya J, Ohno-Machado L. Detecting inappropriate access to electronic health records using collaborative filtering. Mach Learn. 2014;95:87–101.PubMedCrossRef Menon AK, Jiang X, Kim J, Vaidya J, Ohno-Machado L. Detecting inappropriate access to electronic health records using collaborative filtering. Mach Learn. 2014;95:87–101.PubMedCrossRef
39.
go back to reference Liveri D, Sarri A, Skouloudi C. Security and resilience in eHealth infrastructures and services. Secur Chall Risks. 2015. Liveri D, Sarri A, Skouloudi C. Security and resilience in eHealth infrastructures and services. Secur Chall Risks. 2015.
40.
go back to reference Nemec Zlatolas L, Welzer T, Lhotska L. Data breaches in healthcare: security mechanisms for attack mitigation. Clust Comput. 2024:1–16. Nemec Zlatolas L, Welzer T, Lhotska L. Data breaches in healthcare: security mechanisms for attack mitigation. Clust Comput. 2024:1–16.
41.
go back to reference Kruse CS, Smith B, Vanderlinden H, Nealand A. Security techniques for the electronic health records. J Med Syst. 2017;41:1–9.CrossRef Kruse CS, Smith B, Vanderlinden H, Nealand A. Security techniques for the electronic health records. J Med Syst. 2017;41:1–9.CrossRef
42.
go back to reference Feroze A, Daud A, Amjad T, Hayat MK. Group anomaly detection: Past notions, present insights, and future prospects. SN Comput Sci. 2021;2:1–27.CrossRef Feroze A, Daud A, Amjad T, Hayat MK. Group anomaly detection: Past notions, present insights, and future prospects. SN Comput Sci. 2021;2:1–27.CrossRef
43.
go back to reference Sánchez-Guerrero R, Mendoza FA, Diaz-Sanchez D, Cabarcos PA, López AM. Collaborative ehealth meets security: Privacy-enhancing patient profile management. IEEE J Biomed Health Inform. 2017;21(6):1741–9.PubMedCrossRef Sánchez-Guerrero R, Mendoza FA, Diaz-Sanchez D, Cabarcos PA, López AM. Collaborative ehealth meets security: Privacy-enhancing patient profile management. IEEE J Biomed Health Inform. 2017;21(6):1741–9.PubMedCrossRef
44.
go back to reference Wang X, Jin Z. An overview of mobile cloud computing for pervasive healthcare. IEEE Access. 2019;7:66774–91.CrossRef Wang X, Jin Z. An overview of mobile cloud computing for pervasive healthcare. IEEE Access. 2019;7:66774–91.CrossRef
45.
go back to reference Qayyum A, Qadir J, Bilal M, Al-Fuqaha A. Secure and robust machine learning for healthcare: A survey. IEEE Rev Biomed Eng. 2020;14:156–80.CrossRef Qayyum A, Qadir J, Bilal M, Al-Fuqaha A. Secure and robust machine learning for healthcare: A survey. IEEE Rev Biomed Eng. 2020;14:156–80.CrossRef
46.
go back to reference Hamid Z, Khalique F, Mahmood S, Daud A, Bukhari A, Alshemaimri B. Healthcare insurance fraud detection using data mining. BMC Med Inform Decis Mak. 2024;24(1):112.PubMedPubMedCentralCrossRef Hamid Z, Khalique F, Mahmood S, Daud A, Bukhari A, Alshemaimri B. Healthcare insurance fraud detection using data mining. BMC Med Inform Decis Mak. 2024;24(1):112.PubMedPubMedCentralCrossRef
47.
go back to reference Hang L, Choi E, Kim DH. A novel EMR integrity management based on a medical blockchain platform in hospital. Electronics. 2019;8(4):467.CrossRef Hang L, Choi E, Kim DH. A novel EMR integrity management based on a medical blockchain platform in hospital. Electronics. 2019;8(4):467.CrossRef
48.
go back to reference Seh AH, Al-Amri JF, Subahi AF, Agrawal A, Pathak N, Kumar R, et al. An analysis of integrating machine learning in healthcare for ensuring confidentiality of the electronic records. Comput Model Eng Sci. 2021;130(3):1387–422. Seh AH, Al-Amri JF, Subahi AF, Agrawal A, Pathak N, Kumar R, et al. An analysis of integrating machine learning in healthcare for ensuring confidentiality of the electronic records. Comput Model Eng Sci. 2021;130(3):1387–422.
49.
go back to reference Röchner P, Rothlauf F. Unsupervised anomaly detection of implausible electronic health records: a real-world evaluation in cancer registries. BMC Med Res Methodol. 2023;23(1):125.PubMedPubMedCentralCrossRef Röchner P, Rothlauf F. Unsupervised anomaly detection of implausible electronic health records: a real-world evaluation in cancer registries. BMC Med Res Methodol. 2023;23(1):125.PubMedPubMedCentralCrossRef
50.
go back to reference Niu H, Omitaomu OA, Langston MA, Olama M, Ozmen O, Klasky HB, et al. EHR-BERT: A BERT-based model for effective anomaly detection in electronic health records. J Biomed Inform. 2024;150:104605.PubMedCrossRef Niu H, Omitaomu OA, Langston MA, Olama M, Ozmen O, Klasky HB, et al. EHR-BERT: A BERT-based model for effective anomaly detection in electronic health records. J Biomed Inform. 2024;150:104605.PubMedCrossRef
52.
go back to reference Liu Z, et al. A method of SVM with normalization in intrusion detection. Procedia Environ Sci. 2011;11:256–62.CrossRef Liu Z, et al. A method of SVM with normalization in intrusion detection. Procedia Environ Sci. 2011;11:256–62.CrossRef
53.
go back to reference Alanazi R, Aljuhani A. Anomaly Detection for Industrial Internet of Things Cyberattacks. Comput Syst Sci Eng. 2023;44(3). Alanazi R, Aljuhani A. Anomaly Detection for Industrial Internet of Things Cyberattacks. Comput Syst Sci Eng. 2023;44(3).
54.
go back to reference Farahani G. Feature selection based on cross-correlation for the intrusion detection system. Secur Commun Netw. 2020;2020:1–17.CrossRef Farahani G. Feature selection based on cross-correlation for the intrusion detection system. Secur Commun Netw. 2020;2020:1–17.CrossRef
55.
go back to reference Amiri F, Yousefi MR, Lucas C, Shakery A, Yazdani N. Mutual information-based feature selection for intrusion detection systems. J Netw Comput Appl. 2011;34(4):1184–99.CrossRef Amiri F, Yousefi MR, Lucas C, Shakery A, Yazdani N. Mutual information-based feature selection for intrusion detection systems. J Netw Comput Appl. 2011;34(4):1184–99.CrossRef
56.
go back to reference Zhang X, Zhu Z, Fan P. Intrusion detection based on cross-correlation of system call sequences. In: 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’05). IEEE; 2005. pp. 7–pp. Zhang X, Zhu Z, Fan P. Intrusion detection based on cross-correlation of system call sequences. In: 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’05). IEEE; 2005. pp. 7–pp.
57.
go back to reference Zhang Y, Yang Q, Lambotharan S, Kyriakopoulos K, Ghafir I, AsSadhan B. Anomaly-based network intrusion detection using SVM. In: 2019 11th International conference on wireless communications and signal processing (WCSP). IEEE; 2019. pp. 1–6. Zhang Y, Yang Q, Lambotharan S, Kyriakopoulos K, Ghafir I, AsSadhan B. Anomaly-based network intrusion detection using SVM. In: 2019 11th International conference on wireless communications and signal processing (WCSP). IEEE; 2019. pp. 1–6.
58.
go back to reference Fadul AMA. Anomaly Detection based on Isolation Forest and Local Outlier Factor. Africa University; 2023. Fadul AMA. Anomaly Detection based on Isolation Forest and Local Outlier Factor. Africa University; 2023.
59.
go back to reference Kaushal A, Shukla M. Comparative analysis to highlight pros and cons of data mining techniques-clustering, neural network and decision tree. Int J Comput Sci Inf Technol. 2014;5(1):651–6. Kaushal A, Shukla M. Comparative analysis to highlight pros and cons of data mining techniques-clustering, neural network and decision tree. Int J Comput Sci Inf Technol. 2014;5(1):651–6.
60.
go back to reference Ali J, Khan R, Ahmad N, Maqsood I. Random forests and decision trees. Int J Comput Sci Issues (IJCSI). 2012;9(5):272. Ali J, Khan R, Ahmad N, Maqsood I. Random forests and decision trees. Int J Comput Sci Issues (IJCSI). 2012;9(5):272.
61.
go back to reference Mensi A, Bicego M. A novel anomaly score for isolation forests. In: Image Analysis and Processing–ICIAP 2019: 20th International Conference, Trento, Italy, September 9–13, 2019, Proceedings, Part I 20. Springer; 2019. pp. 152–163. Mensi A, Bicego M. A novel anomaly score for isolation forests. In: Image Analysis and Processing–ICIAP 2019: 20th International Conference, Trento, Italy, September 9–13, 2019, Proceedings, Part I 20. Springer; 2019. pp. 152–163.
62.
go back to reference Jones PJ, James MK, Davies MJ, Khunti K, Catt M, Yates T, et al. FilterK: a new outlier detection method for k-means clustering of physical activity. J Biomed Inform. 2020;104:103397.PubMedCrossRef Jones PJ, James MK, Davies MJ, Khunti K, Catt M, Yates T, et al. FilterK: a new outlier detection method for k-means clustering of physical activity. J Biomed Inform. 2020;104:103397.PubMedCrossRef
63.
go back to reference Bezdek JC, Pal NR. Cluster validation with generalized Dunn’s indices. In: Proceedings 1995 second New Zealand international two-stream conference on artificial neural networks and expert systems. IEEE; 1995. pp. 190–193. Bezdek JC, Pal NR. Cluster validation with generalized Dunn’s indices. In: Proceedings 1995 second New Zealand international two-stream conference on artificial neural networks and expert systems. IEEE; 1995. pp. 190–193.
64.
go back to reference Kumar VP, Sowmya I. A review on pros and cons of machine learning algorithms. J Eng Sci. 2021;12(10):272–6. Kumar VP, Sowmya I. A review on pros and cons of machine learning algorithms. J Eng Sci. 2021;12(10):272–6.
Metadata
Title
Anomaly-based threat detection in smart health using machine learning
Authors
Muntaha Tabassum
Saba Mahmood
Amal Bukhari
Bader Alshemaimri
Ali Daud
Fatima Khalique
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2024
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-024-02760-4