Skip to main content
Top
Published in:

03-09-2024 | Review Article

Animal models and related techniques for dentin study

Authors: Shuai Wang, Yan Tu, Hao Yu, Zhen Li, Jinqiu Feng, Shangfeng Liu

Published in: Odontology | Issue 1/2025

Login to get access

Abstract

The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.
Literature
2.
go back to reference Alvares K, Kanwar YS, Veis A. Expression and potential role of dentin phosphophoryn (DPP) in mouse embryonic tissues involved in epithelial-mesenchymal interactions and branching morphogenesis. Dev Dyn. 2006;235:2980–90.PubMedCrossRef Alvares K, Kanwar YS, Veis A. Expression and potential role of dentin phosphophoryn (DPP) in mouse embryonic tissues involved in epithelial-mesenchymal interactions and branching morphogenesis. Dev Dyn. 2006;235:2980–90.PubMedCrossRef
3.
go back to reference Iwatsuki S, Honda MJ, Harada H, Ueda M. Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci. 2006;114:310–7.PubMedCrossRef Iwatsuki S, Honda MJ, Harada H, Ueda M. Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci. 2006;114:310–7.PubMedCrossRef
4.
go back to reference Scott MA, Levi B, Askarinam A, et al. Brief review of models of ectopic bone formation. Stem Cells Dev. 2012;21:655–67.PubMedCrossRef Scott MA, Levi B, Askarinam A, et al. Brief review of models of ectopic bone formation. Stem Cells Dev. 2012;21:655–67.PubMedCrossRef
5.
go back to reference Yu JH, Shi JN, Deng ZH, et al. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun. 2006;346:116–24.PubMedCrossRef Yu JH, Shi JN, Deng ZH, et al. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun. 2006;346:116–24.PubMedCrossRef
6.
go back to reference Emken S, Witzel C, Kierdorf U, Frolich K, Kierdorf H. Characterization of short-period and long-period incremental markings in porcine enamel and dentine-results of a fluorochrome labelling study in wild boar and domestic pigs. J Anat. 2021;239:1207–20.PubMedPubMedCentralCrossRef Emken S, Witzel C, Kierdorf U, Frolich K, Kierdorf H. Characterization of short-period and long-period incremental markings in porcine enamel and dentine-results of a fluorochrome labelling study in wild boar and domestic pigs. J Anat. 2021;239:1207–20.PubMedPubMedCentralCrossRef
7.
go back to reference Hu H, Duan Y, Wang K, et al. Dental niche cells directly contribute to tooth reconstitution and morphogenesis. Cell Rep. 2022;41: 111737.PubMedCrossRef Hu H, Duan Y, Wang K, et al. Dental niche cells directly contribute to tooth reconstitution and morphogenesis. Cell Rep. 2022;41: 111737.PubMedCrossRef
8.
go back to reference Isono K, Takahashi E, Miyoshi I, et al. Simultaneous fluorescent identification of odontoblasts and ameloblasts. J Dent Res. 2021;100:532–41.PubMedCrossRef Isono K, Takahashi E, Miyoshi I, et al. Simultaneous fluorescent identification of odontoblasts and ameloblasts. J Dent Res. 2021;100:532–41.PubMedCrossRef
9.
go back to reference Piriou M, Lorenzo C, Raymond-Letron I, et al. A spectral principal component analysis-based framework for composite hard/soft tissue fluorescence image investigation. Front Physiol. 2022;13: 899626.PubMedPubMedCentralCrossRef Piriou M, Lorenzo C, Raymond-Letron I, et al. A spectral principal component analysis-based framework for composite hard/soft tissue fluorescence image investigation. Front Physiol. 2022;13: 899626.PubMedPubMedCentralCrossRef
10.
go back to reference Bedran-Russo AK, Pereira PN, Duarte WR, Okuyama K, Yamauchi M. Removal of dentin matrix proteoglycans by trypsin digestion and its effect on dentin bonding. J Biomed Mater Res B Appl Biomater. 2008;85:261–6.PubMedCrossRef Bedran-Russo AK, Pereira PN, Duarte WR, Okuyama K, Yamauchi M. Removal of dentin matrix proteoglycans by trypsin digestion and its effect on dentin bonding. J Biomed Mater Res B Appl Biomater. 2008;85:261–6.PubMedCrossRef
11.
go back to reference Niu LN, Zhang L, Jiao K, et al. Localization of MMP-2, MMP-9, TIMP-1, and TIMP-2 in human coronal dentine. J Dent. 2011;39:536–42.PubMedCrossRef Niu LN, Zhang L, Jiao K, et al. Localization of MMP-2, MMP-9, TIMP-1, and TIMP-2 in human coronal dentine. J Dent. 2011;39:536–42.PubMedCrossRef
12.
go back to reference Willbold E, Witte F. Histology and research at the hard tissue-implant interface using Technovit 9100 New embedding technique. Acta Biomater. 2010;6:4447–55.PubMedCrossRef Willbold E, Witte F. Histology and research at the hard tissue-implant interface using Technovit 9100 New embedding technique. Acta Biomater. 2010;6:4447–55.PubMedCrossRef
14.
go back to reference Chun KJ, Lee JY. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads. J Dent Biomech. 2014;5:1758736014555246.PubMedPubMedCentralCrossRef Chun KJ, Lee JY. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads. J Dent Biomech. 2014;5:1758736014555246.PubMedPubMedCentralCrossRef
15.
go back to reference Ikarashi A, Sano H, Tanaka M, Ohshima H. The accuracy of quantifying the degree of hard tissue calcification using an electron probe micro analyzer, micro-focus X-ray computed tomography, and tissue sectioning methods. J Oral Biosci. 2023;65:226–32.PubMedCrossRef Ikarashi A, Sano H, Tanaka M, Ohshima H. The accuracy of quantifying the degree of hard tissue calcification using an electron probe micro analyzer, micro-focus X-ray computed tomography, and tissue sectioning methods. J Oral Biosci. 2023;65:226–32.PubMedCrossRef
16.
go back to reference Zhang Y, Robles-Linares JA, Chen L, et al. Advances in machining of hard tissues – from material removal mechanisms to tooling solutions. Int J Mach Tools Manuf. 2022;172:103838.CrossRef Zhang Y, Robles-Linares JA, Chen L, et al. Advances in machining of hard tissues – from material removal mechanisms to tooling solutions. Int J Mach Tools Manuf. 2022;172:103838.CrossRef
17.
go back to reference Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Preparation, characterization and in vitro efficacy of an acid-modified beta-TCP material for dental hard-tissue remineralization. Acta Biomater. 2010;6:969–78.PubMedCrossRef Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Preparation, characterization and in vitro efficacy of an acid-modified beta-TCP material for dental hard-tissue remineralization. Acta Biomater. 2010;6:969–78.PubMedCrossRef
18.
go back to reference Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med. 2018;10(455):eaaf3227.PubMedCrossRef Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med. 2018;10(455):eaaf3227.PubMedCrossRef
19.
go back to reference Yu J, Deng Z, Shi J, et al. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng. 2006;12:3097–105.PubMedCrossRef Yu J, Deng Z, Shi J, et al. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng. 2006;12:3097–105.PubMedCrossRef
20.
go back to reference Chang CC, Lin TA, Wu SY, Lin CP, Chang HH. Regeneration of tooth with allogenous, autoclaved treated dentin matrix with dental pulpal stem cells: an in vivo study. J Endod. 2020;46:1256–64.PubMedCrossRef Chang CC, Lin TA, Wu SY, Lin CP, Chang HH. Regeneration of tooth with allogenous, autoclaved treated dentin matrix with dental pulpal stem cells: an in vivo study. J Endod. 2020;46:1256–64.PubMedCrossRef
21.
go back to reference Huang GT, Shagramanova K, Chan SW. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod. 2006;32:1066–73.PubMedCrossRef Huang GT, Shagramanova K, Chan SW. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod. 2006;32:1066–73.PubMedCrossRef
22.
go back to reference Kim S, Hwangbo H, Chae S, Lee H. Biopolymers and their application in bioprinting processes for dental tissue engineering. Pharmaceutics. 2023;15:2118.PubMedPubMedCentralCrossRef Kim S, Hwangbo H, Chae S, Lee H. Biopolymers and their application in bioprinting processes for dental tissue engineering. Pharmaceutics. 2023;15:2118.PubMedPubMedCentralCrossRef
23.
26.
go back to reference Jani P, Zhang H, Benson MD, Qin C. Noggin inhibition of mouse dentinogenesis. J Oral Biosci. 2020;62:72–9.PubMedCrossRef Jani P, Zhang H, Benson MD, Qin C. Noggin inhibition of mouse dentinogenesis. J Oral Biosci. 2020;62:72–9.PubMedCrossRef
27.
go back to reference Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: insights from Cre/loxP-based cell lineage tracing studies. Jpn Dent Sci Rev. 2024;60:109–19.PubMedPubMedCentralCrossRef Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: insights from Cre/loxP-based cell lineage tracing studies. Jpn Dent Sci Rev. 2024;60:109–19.PubMedPubMedCentralCrossRef
29.
go back to reference Papaioannou VE, Behringer RR. Mouse gene-targeting strategies for maximum ease and versatility. Cold Spring Harb Protoc. 2024;2024:pdb over 107957.CrossRef Papaioannou VE, Behringer RR. Mouse gene-targeting strategies for maximum ease and versatility. Cold Spring Harb Protoc. 2024;2024:pdb over 107957.CrossRef
30.
go back to reference Kague E, Witten PE, Soenens M, et al. Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth. Dev Biol. 2018;435:176–84.PubMedCrossRef Kague E, Witten PE, Soenens M, et al. Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth. Dev Biol. 2018;435:176–84.PubMedCrossRef
31.
go back to reference Henry EC, Marasco PD, Catania KC. Plasticity of the cortical dentition representation after tooth extraction in naked mole-rats. J Comp Neurol. 2005;485:64–74.PubMedCrossRef Henry EC, Marasco PD, Catania KC. Plasticity of the cortical dentition representation after tooth extraction in naked mole-rats. J Comp Neurol. 2005;485:64–74.PubMedCrossRef
32.
go back to reference Hite NJ, Germain C, Cain BW, et al. The better to eat you with: bite force in the naked mole-rat (Heterocephalus glaber) is stronger than predicted based on body size. Front Integr Neurosci. 2019;13:70.PubMedPubMedCentralCrossRef Hite NJ, Germain C, Cain BW, et al. The better to eat you with: bite force in the naked mole-rat (Heterocephalus glaber) is stronger than predicted based on body size. Front Integr Neurosci. 2019;13:70.PubMedPubMedCentralCrossRef
33.
go back to reference Leonida SRL, Bennett NC, Leitch AR, Faulkes CG. Patterns of telomere length with age in African mole-rats: new insights from quantitative fluorescence in situ hybridisation (qFISH). PeerJ. 2020;8: e10498.PubMedPubMedCentralCrossRef Leonida SRL, Bennett NC, Leitch AR, Faulkes CG. Patterns of telomere length with age in African mole-rats: new insights from quantitative fluorescence in situ hybridisation (qFISH). PeerJ. 2020;8: e10498.PubMedPubMedCentralCrossRef
34.
go back to reference Montoya-Sanhueza G, Bennett NC, Oosthuizen MK, Dengler-Crish CM, Chinsamy A. Long bone histomorphogenesis of the naked mole-rat: histodiversity and intraspecific variation. J Anat. 2021;238:1259–83.PubMedCrossRef Montoya-Sanhueza G, Bennett NC, Oosthuizen MK, Dengler-Crish CM, Chinsamy A. Long bone histomorphogenesis of the naked mole-rat: histodiversity and intraspecific variation. J Anat. 2021;238:1259–83.PubMedCrossRef
35.
go back to reference Mangione F, Salmon B, EzEldeen M, et al. Characteristics of large animal models for current cell-based oral tissue regeneration. Tissue Eng Part B Rev. 2022;28:489–505.PubMedCrossRef Mangione F, Salmon B, EzEldeen M, et al. Characteristics of large animal models for current cell-based oral tissue regeneration. Tissue Eng Part B Rev. 2022;28:489–505.PubMedCrossRef
36.
go back to reference Sreenath T, Thyagarajan T, Hall B, et al. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem. 2003;278:24874–80.PubMedCrossRef Sreenath T, Thyagarajan T, Hall B, et al. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem. 2003;278:24874–80.PubMedCrossRef
37.
go back to reference Chen S, Gluhak-Heinrich J, Martinez M, et al. Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem. 2008;283:19359–70.PubMedPubMedCentralCrossRef Chen S, Gluhak-Heinrich J, Martinez M, et al. Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem. 2008;283:19359–70.PubMedPubMedCentralCrossRef
39.
go back to reference Zhang X, Shi C, Zhao H, et al. Distinctive role of ACVR1 in dentin formation: requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. J Mol Histol. 2019;50:43–61.PubMedCrossRef Zhang X, Shi C, Zhao H, et al. Distinctive role of ACVR1 in dentin formation: requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. J Mol Histol. 2019;50:43–61.PubMedCrossRef
41.
go back to reference Vijaykumar A, Dyrkacz P, Vidovic-Zdrilic I, Maye P, Mina M. Expression of BSP-GFPtpz transgene during osteogenesis and reparative dentinogenesis. J Dent Res. 2020;99:89–97.PubMedCrossRef Vijaykumar A, Dyrkacz P, Vidovic-Zdrilic I, Maye P, Mina M. Expression of BSP-GFPtpz transgene during osteogenesis and reparative dentinogenesis. J Dent Res. 2020;99:89–97.PubMedCrossRef
42.
go back to reference Chen S, Chen L, Jahangiri A, et al. Expression and processing of small integrin-binding ligand N-linked glycoproteins in mouse odontoblastic cells. Arch Oral Biol. 2008;53:879–89.PubMedPubMedCentralCrossRef Chen S, Chen L, Jahangiri A, et al. Expression and processing of small integrin-binding ligand N-linked glycoproteins in mouse odontoblastic cells. Arch Oral Biol. 2008;53:879–89.PubMedPubMedCentralCrossRef
43.
go back to reference Vidovic I, Banerjee A, Fatahi R, et al. alphaSMA-expressing perivascular cells represent dental pulp progenitors in vivo. J Dent Res. 2017;96:323–30.PubMedCrossRef Vidovic I, Banerjee A, Fatahi R, et al. alphaSMA-expressing perivascular cells represent dental pulp progenitors in vivo. J Dent Res. 2017;96:323–30.PubMedCrossRef
44.
go back to reference Vidovic-Zdrilic I, Vining KH, Vijaykumar A, et al. FGF2 enhances odontoblast differentiation by alphaSMA(+) progenitors in vivo. J Dent Res. 2018;97:1170–7.PubMedPubMedCentralCrossRef Vidovic-Zdrilic I, Vining KH, Vijaykumar A, et al. FGF2 enhances odontoblast differentiation by alphaSMA(+) progenitors in vivo. J Dent Res. 2018;97:1170–7.PubMedPubMedCentralCrossRef
45.
go back to reference Chen D, Yu F, Wu F, et al. The role of Wnt7B in the mediation of dentinogenesis via the ERK1/2 pathway. Arch Oral Biol. 2019;104:123–32.PubMedCrossRef Chen D, Yu F, Wu F, et al. The role of Wnt7B in the mediation of dentinogenesis via the ERK1/2 pathway. Arch Oral Biol. 2019;104:123–32.PubMedCrossRef
46.
go back to reference Ren Y, Su S, Liu X, et al. Microbiota-derived short-chain fatty acids promote BMP signaling by inhibiting histone deacetylation and contribute to dentinogenic differentiation in murine incisor regeneration. Stem Cells Dev. 2020;29:1201–14.PubMedCrossRef Ren Y, Su S, Liu X, et al. Microbiota-derived short-chain fatty acids promote BMP signaling by inhibiting histone deacetylation and contribute to dentinogenic differentiation in murine incisor regeneration. Stem Cells Dev. 2020;29:1201–14.PubMedCrossRef
47.
go back to reference Ono R, Koike N, Inokawa H, et al. Incremental growth lines in mouse molar dentin represent 8-hr ultradian rhythm. Acta Histochem Cytochem. 2019;52:93–9.PubMedPubMedCentralCrossRef Ono R, Koike N, Inokawa H, et al. Incremental growth lines in mouse molar dentin represent 8-hr ultradian rhythm. Acta Histochem Cytochem. 2019;52:93–9.PubMedPubMedCentralCrossRef
50.
51.
52.
go back to reference Guo S, Lim D, Dong Z, et al. Dentin sialophosphoprotein: a regulatory protein for dental pulp stem cell identity and fate. Stem Cells Dev. 2014;23:2883–94.PubMedPubMedCentralCrossRef Guo S, Lim D, Dong Z, et al. Dentin sialophosphoprotein: a regulatory protein for dental pulp stem cell identity and fate. Stem Cells Dev. 2014;23:2883–94.PubMedPubMedCentralCrossRef
53.
go back to reference Yamashiro T, Zheng L, Shitaku Y, et al. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation. 2007;75:452–62.PubMedCrossRef Yamashiro T, Zheng L, Shitaku Y, et al. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation. 2007;75:452–62.PubMedCrossRef
54.
go back to reference James MJ, Jarvinen E, Thesleff I. Bono1: a gene associated with regions of deposition of bone and dentine. Gene Expr Patterns. 2004;4:595–9.PubMedCrossRef James MJ, Jarvinen E, Thesleff I. Bono1: a gene associated with regions of deposition of bone and dentine. Gene Expr Patterns. 2004;4:595–9.PubMedCrossRef
55.
go back to reference Liu F, Chu EY, Watt B, et al. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol. 2008;313:210–24.PubMedCrossRef Liu F, Chu EY, Watt B, et al. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol. 2008;313:210–24.PubMedCrossRef
57.
go back to reference Tao H, Lin H, Sun Z, et al. Klf4 promotes dentinogenesis and odontoblastic differentiation via modulation of TGF-beta signaling pathway and interaction with histone acetylation. J Bone Miner Res. 2019;34:1502–16.PubMedCrossRef Tao H, Lin H, Sun Z, et al. Klf4 promotes dentinogenesis and odontoblastic differentiation via modulation of TGF-beta signaling pathway and interaction with histone acetylation. J Bone Miner Res. 2019;34:1502–16.PubMedCrossRef
58.
go back to reference Deng S, Fan L, Wang Y, Zhang Q. Constitutive activation of beta-catenin in odontoblasts induces aberrant pulp calcification in mouse incisors. J Mol Histol. 2021;52:567–76.PubMedCrossRef Deng S, Fan L, Wang Y, Zhang Q. Constitutive activation of beta-catenin in odontoblasts induces aberrant pulp calcification in mouse incisors. J Mol Histol. 2021;52:567–76.PubMedCrossRef
59.
go back to reference Luo X, Yin J, Miao S, et al. mTORC1 promotes mineralization via p53 pathway. FASEB J. 2021;35: e21325.PubMedCrossRef Luo X, Yin J, Miao S, et al. mTORC1 promotes mineralization via p53 pathway. FASEB J. 2021;35: e21325.PubMedCrossRef
60.
go back to reference Fu J, Zheng H, Xue Y, et al. WWP2 promotes odontoblastic differentiation by monoubiquitinating KLF5. J Dent Res. 2021;100:432–9.PubMedCrossRef Fu J, Zheng H, Xue Y, et al. WWP2 promotes odontoblastic differentiation by monoubiquitinating KLF5. J Dent Res. 2021;100:432–9.PubMedCrossRef
61.
go back to reference Imhof T, Rosenblatt K, Pryymachuk G, et al. Epithelial loss of mitochondrial oxidative phosphorylation leads to disturbed enamel and impaired dentin matrix formation in postnatal developed mouse incisor. Sci Rep. 2020;10:22037.PubMedPubMedCentralCrossRef Imhof T, Rosenblatt K, Pryymachuk G, et al. Epithelial loss of mitochondrial oxidative phosphorylation leads to disturbed enamel and impaired dentin matrix formation in postnatal developed mouse incisor. Sci Rep. 2020;10:22037.PubMedPubMedCentralCrossRef
63.
64.
go back to reference Wang SK, Zhang H, Chavez MB, et al. Dental malformations associated with biallelic MMP20 mutations. Mol Genet Genom Med. 2020;8: e1307.CrossRef Wang SK, Zhang H, Chavez MB, et al. Dental malformations associated with biallelic MMP20 mutations. Mol Genet Genom Med. 2020;8: e1307.CrossRef
65.
go back to reference Tao H, Li Q, Lin Y, et al. Coordinated expression of p300 and HDAC3 upregulates histone acetylation during dentinogenesis. J Cell Biochem. 2020;121:2478–88.PubMedCrossRef Tao H, Li Q, Lin Y, et al. Coordinated expression of p300 and HDAC3 upregulates histone acetylation during dentinogenesis. J Cell Biochem. 2020;121:2478–88.PubMedCrossRef
66.
go back to reference Omi M, Kulkarni AK, Raichur A, et al. BMP-smad signaling regulates postnatal crown dentinogenesis in mouse molar. JBMR Plus. 2020;4: e10249.PubMedCrossRef Omi M, Kulkarni AK, Raichur A, et al. BMP-smad signaling regulates postnatal crown dentinogenesis in mouse molar. JBMR Plus. 2020;4: e10249.PubMedCrossRef
67.
go back to reference Su SP, Ren Y, Zhang Y, Zhao YM, Xiao E. Microbiota regulates dentine mineralisation and differentiation of dental pulp stem cells. Chin J Dent Res. 2020;23:177–82.PubMed Su SP, Ren Y, Zhang Y, Zhao YM, Xiao E. Microbiota regulates dentine mineralisation and differentiation of dental pulp stem cells. Chin J Dent Res. 2020;23:177–82.PubMed
68.
69.
go back to reference Aryal YP, Neupane S, Adhikari N, et al. An endoplasmic reticulum stress regulator, Tmbim6, modulates secretory stage of mice molar. J Cell Physiol. 2019;234:20354–65.PubMedCrossRef Aryal YP, Neupane S, Adhikari N, et al. An endoplasmic reticulum stress regulator, Tmbim6, modulates secretory stage of mice molar. J Cell Physiol. 2019;234:20354–65.PubMedCrossRef
71.
go back to reference Xu W, Chen S. Establishment of an immortalized mouse Bmp2 knockout dental papilla mesenchymal cell line. Methods Mol Biol. 2019;1922:13–9.PubMedCrossRef Xu W, Chen S. Establishment of an immortalized mouse Bmp2 knockout dental papilla mesenchymal cell line. Methods Mol Biol. 2019;1922:13–9.PubMedCrossRef
72.
go back to reference Miyazaki T, Baba TT, Mori M, Komori T. Collapsin response mediator protein 1, a novel marker protein for differentiated odontoblasts. Acta Histochem Cytochem. 2018;51:185–90.PubMedPubMedCentralCrossRef Miyazaki T, Baba TT, Mori M, Komori T. Collapsin response mediator protein 1, a novel marker protein for differentiated odontoblasts. Acta Histochem Cytochem. 2018;51:185–90.PubMedPubMedCentralCrossRef
73.
go back to reference Huang H, Wang J, Zhang Y, et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone. 2018;114:161–71.PubMedCrossRef Huang H, Wang J, Zhang Y, et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone. 2018;114:161–71.PubMedCrossRef
74.
go back to reference Malik Z, Alexiou M, Hallgrimsson B, et al. Bone morphogenetic protein 2 coordinates early tooth mineralization. J Dent Res. 2018;97:835–43.PubMedCrossRef Malik Z, Alexiou M, Hallgrimsson B, et al. Bone morphogenetic protein 2 coordinates early tooth mineralization. J Dent Res. 2018;97:835–43.PubMedCrossRef
76.
go back to reference Li C, Jing Y, Wang K, et al. Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process. Int J Biol Sci. 2018;14:693–704.PubMedPubMedCentralCrossRef Li C, Jing Y, Wang K, et al. Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process. Int J Biol Sci. 2018;14:693–704.PubMedPubMedCentralCrossRef
77.
go back to reference Nakatomi M, Quispe-Salcedo A, Sakaguchi M, et al. Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in mice. Histochem Cell Biol. 2018;149:383–91.PubMedCrossRef Nakatomi M, Quispe-Salcedo A, Sakaguchi M, et al. Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in mice. Histochem Cell Biol. 2018;149:383–91.PubMedCrossRef
78.
go back to reference Choi SH, Jang JH, Koh JT, et al. Effect of leptin on odontoblastic differentiation and angiogenesis: an in vivo study. J Endod. 2019;45:1332–41.PubMedCrossRef Choi SH, Jang JH, Koh JT, et al. Effect of leptin on odontoblastic differentiation and angiogenesis: an in vivo study. J Endod. 2019;45:1332–41.PubMedCrossRef
79.
go back to reference Qin C, Brunn JC, Cadena E, et al. The expression of dentin sialophosphoprotein gene in bone. J Dent Res. 2002;81:392–4.PubMedCrossRef Qin C, Brunn JC, Cadena E, et al. The expression of dentin sialophosphoprotein gene in bone. J Dent Res. 2002;81:392–4.PubMedCrossRef
80.
go back to reference Kato Y, Yokose S. Oxytocin facilitates dentinogenesis of rat dental pulp cells. J Endod. 2021;47:592–9.PubMedCrossRef Kato Y, Yokose S. Oxytocin facilitates dentinogenesis of rat dental pulp cells. J Endod. 2021;47:592–9.PubMedCrossRef
81.
82.
go back to reference Yang IS, Lee DS, Park JT, et al. Tertiary dentin formation after direct pulp capping with odontogenic ameloblast-associated protein in rat teeth. J Endod. 2010;36:1956–62.PubMedCrossRef Yang IS, Lee DS, Park JT, et al. Tertiary dentin formation after direct pulp capping with odontogenic ameloblast-associated protein in rat teeth. J Endod. 2010;36:1956–62.PubMedCrossRef
83.
go back to reference Takeuchi R, Ohkura N, Yoshiba K, et al. Immunohistochemistry and gene expression of GLUT1, RUNX2 and MTOR in reparative dentinogenesis. Oral Dis. 2020;26:341–9.PubMedCrossRef Takeuchi R, Ohkura N, Yoshiba K, et al. Immunohistochemistry and gene expression of GLUT1, RUNX2 and MTOR in reparative dentinogenesis. Oral Dis. 2020;26:341–9.PubMedCrossRef
84.
go back to reference Chen H, Kang J, Zhang F, et al. SIRT4 regulates rat dental papilla cell differentiation by promoting mitochondrial functions. Int J Biochem Cell Biol. 2021;134: 105962.PubMedCrossRef Chen H, Kang J, Zhang F, et al. SIRT4 regulates rat dental papilla cell differentiation by promoting mitochondrial functions. Int J Biochem Cell Biol. 2021;134: 105962.PubMedCrossRef
85.
go back to reference Moon JS, Nam YS, Kang JH, et al. Regulatory role of insulin-like growth factor-binding proteins in odontogenic mineralization in rats. J Mol Histol. 2021;52:63–75.PubMedCrossRef Moon JS, Nam YS, Kang JH, et al. Regulatory role of insulin-like growth factor-binding proteins in odontogenic mineralization in rats. J Mol Histol. 2021;52:63–75.PubMedCrossRef
86.
go back to reference Huysseune A, Sire JY. The role of epithelial remodelling in tooth eruption in larval zebrafish. Cell Tissue Res. 2004;315:85–95.PubMedCrossRef Huysseune A, Sire JY. The role of epithelial remodelling in tooth eruption in larval zebrafish. Cell Tissue Res. 2004;315:85–95.PubMedCrossRef
87.
go back to reference Kuo TF, Lin HC, Yang KC, et al. Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artif Organs. 2011;35:113–21.PubMedCrossRef Kuo TF, Lin HC, Yang KC, et al. Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artif Organs. 2011;35:113–21.PubMedCrossRef
88.
89.
go back to reference Kodonas K, Gogos C, Papadimitriou S, Kouzi-Koliakou K, Tziafas D. Experimental formation of dentin-like structure in the root canal implant model using cryopreserved swine dental pulp progenitor cells. J Endod. 2012;38:913–9.PubMedCrossRef Kodonas K, Gogos C, Papadimitriou S, Kouzi-Koliakou K, Tziafas D. Experimental formation of dentin-like structure in the root canal implant model using cryopreserved swine dental pulp progenitor cells. J Endod. 2012;38:913–9.PubMedCrossRef
90.
go back to reference Yang KC, Wang CH, Chang HH, et al. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med. 2012;6:777–85.PubMedCrossRef Yang KC, Wang CH, Chang HH, et al. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med. 2012;6:777–85.PubMedCrossRef
91.
go back to reference Nakamura Y, Slaby I, Matsumoto K, Ritchie HH, Lyngstadaas SP. Immunohistochemical characterization of rapid dentin formation induced by enamel matrix derivative. Calcif Tissue Int. 2004;75:243–52.PubMedCrossRef Nakamura Y, Slaby I, Matsumoto K, Ritchie HH, Lyngstadaas SP. Immunohistochemical characterization of rapid dentin formation induced by enamel matrix derivative. Calcif Tissue Int. 2004;75:243–52.PubMedCrossRef
92.
go back to reference Mangione F, EzEldeen M, Bardet C, et al. Implanted dental pulp cells fail to induce regeneration in partial pulpotomies. J Dent Res. 2017;96:1406–13.PubMedCrossRef Mangione F, EzEldeen M, Bardet C, et al. Implanted dental pulp cells fail to induce regeneration in partial pulpotomies. J Dent Res. 2017;96:1406–13.PubMedCrossRef
93.
go back to reference Kim J, Yamakoshi Y, Iwata T, et al. Porcine dentin matrix protein 1: gene structure, cDNA sequence, and expression in teeth. Eur J Oral Sci. 2006;114(1):33–41.PubMedPubMedCentralCrossRef Kim J, Yamakoshi Y, Iwata T, et al. Porcine dentin matrix protein 1: gene structure, cDNA sequence, and expression in teeth. Eur J Oral Sci. 2006;114(1):33–41.PubMedPubMedCentralCrossRef
94.
go back to reference Yamakoshi Y, Hu JC, Fukae M, et al. Porcine dentin sialoprotein is a proteoglycan with glycosaminoglycan chains containing chondroitin 6-sulfate. J Biol Chem. 2005;280:1552–60.PubMedCrossRef Yamakoshi Y, Hu JC, Fukae M, et al. Porcine dentin sialoprotein is a proteoglycan with glycosaminoglycan chains containing chondroitin 6-sulfate. J Biol Chem. 2005;280:1552–60.PubMedCrossRef
95.
go back to reference Alqahtani Q, Zaky SH, Patil A, et al. Decellularized swine dental pulp tissue for regenerative root canal therapy. J Dent Res. 2018;97:1460–7.PubMedCrossRef Alqahtani Q, Zaky SH, Patil A, et al. Decellularized swine dental pulp tissue for regenerative root canal therapy. J Dent Res. 2018;97:1460–7.PubMedCrossRef
96.
go back to reference Ruan N, Lin C, Dong X, Hu X, Zhang Y. Induction of rhesus keratinocytes into functional ameloblasts by mouse embryonic dental mesenchyme. Tissue Eng Regen Med. 2018;15:173–81.PubMedCrossRef Ruan N, Lin C, Dong X, Hu X, Zhang Y. Induction of rhesus keratinocytes into functional ameloblasts by mouse embryonic dental mesenchyme. Tissue Eng Regen Med. 2018;15:173–81.PubMedCrossRef
97.
go back to reference Tsuchiya M, Sasano Y, Kagayama M, et al. The extent of odontoblast processes in the dentin is distinct between cusp and cervical regions during development and aging. Arch Histol Cytol. 2002;65(2):179–88.PubMedCrossRef Tsuchiya M, Sasano Y, Kagayama M, et al. The extent of odontoblast processes in the dentin is distinct between cusp and cervical regions during development and aging. Arch Histol Cytol. 2002;65(2):179–88.PubMedCrossRef
98.
go back to reference Sawada T, Ishikawa T, Shintani S, Yanagisawa T. Ultrastructural immunolocalization of dentin matrix protein 1 on Sharpey’s fibers in monkey tooth cementum. Biotech Histochem. 2012;87:360–5.PubMedCrossRef Sawada T, Ishikawa T, Shintani S, Yanagisawa T. Ultrastructural immunolocalization of dentin matrix protein 1 on Sharpey’s fibers in monkey tooth cementum. Biotech Histochem. 2012;87:360–5.PubMedCrossRef
99.
go back to reference Soukup JW, Jeffery J, Drizin SR, et al. Correlation of mineral density and elastic modulus of dog dentin using mu-CT and nanoindentation. J Biomech. 2023;147: 111434.PubMedPubMedCentralCrossRef Soukup JW, Jeffery J, Drizin SR, et al. Correlation of mineral density and elastic modulus of dog dentin using mu-CT and nanoindentation. J Biomech. 2023;147: 111434.PubMedPubMedCentralCrossRef
100.
go back to reference El Halaby HM, Abu-Seida AM, Fawzy MI, Farid MH, Bastawy HA. Evaluation of the regenerative potential of dentin conditioning and naturally derived scaffold for necrotic immature permanent teeth in a dog model. Int J Exp Pathol. 2020;101:264–76.PubMedPubMedCentralCrossRef El Halaby HM, Abu-Seida AM, Fawzy MI, Farid MH, Bastawy HA. Evaluation of the regenerative potential of dentin conditioning and naturally derived scaffold for necrotic immature permanent teeth in a dog model. Int J Exp Pathol. 2020;101:264–76.PubMedPubMedCentralCrossRef
101.
go back to reference Li G, Liu M, Zhang S, et al. Essential role of IFT140 in promoting dentinogenesis. J Dent Res. 2018;97:423–31.PubMedCrossRef Li G, Liu M, Zhang S, et al. Essential role of IFT140 in promoting dentinogenesis. J Dent Res. 2018;97:423–31.PubMedCrossRef
102.
go back to reference Ishikawa Y, Nakatomi M, Ida-Yonemochi H, Ohshima H. Quiescent adult stem cells in murine teeth are regulated by Shh signaling. Cell Tissue Res. 2017;369:497–512.PubMedCrossRef Ishikawa Y, Nakatomi M, Ida-Yonemochi H, Ohshima H. Quiescent adult stem cells in murine teeth are regulated by Shh signaling. Cell Tissue Res. 2017;369:497–512.PubMedCrossRef
103.
go back to reference Frozoni M, Marques MR, Hamasaki SK, et al. Contribution of bone marrow-derived cells to reparative dentinogenesis using bone marrow transplantation model. J Endod. 2020;46:404–12.PubMedCrossRef Frozoni M, Marques MR, Hamasaki SK, et al. Contribution of bone marrow-derived cells to reparative dentinogenesis using bone marrow transplantation model. J Endod. 2020;46:404–12.PubMedCrossRef
104.
go back to reference Vidovic-Zdrilic I, Vijaykumar A, Mina M. Activation of alphaSMA expressing perivascular cells during reactionary dentinogenesis. Int Endod J. 2019;52:68–76.PubMedCrossRef Vidovic-Zdrilic I, Vijaykumar A, Mina M. Activation of alphaSMA expressing perivascular cells during reactionary dentinogenesis. Int Endod J. 2019;52:68–76.PubMedCrossRef
105.
go back to reference Matsumura S, Quispe-Salcedo A, Schiller CM, et al. IGF-1 mediates EphrinB1 activation in regulating tertiary dentin formation. J Dent Res. 2017;96:1153–61.PubMedPubMedCentralCrossRef Matsumura S, Quispe-Salcedo A, Schiller CM, et al. IGF-1 mediates EphrinB1 activation in regulating tertiary dentin formation. J Dent Res. 2017;96:1153–61.PubMedPubMedCentralCrossRef
106.
107.
108.
go back to reference Okamoto M, Takahashi Y, Komichi S, et al. Effect of tissue inhibitor of metalloprotease 1 on human pulp cells in vitro and rat pulp tissue in vivo. Int Endod J. 2019;52:1051–62.PubMedCrossRef Okamoto M, Takahashi Y, Komichi S, et al. Effect of tissue inhibitor of metalloprotease 1 on human pulp cells in vitro and rat pulp tissue in vivo. Int Endod J. 2019;52:1051–62.PubMedCrossRef
109.
go back to reference Kuo W-T, Li X, Chen F-Y, et al. Experimental pulp-capping agent radiopaque dicalcium silicate cement facilitates dentinogenesis. Front Mater. 2021;8:738430.CrossRef Kuo W-T, Li X, Chen F-Y, et al. Experimental pulp-capping agent radiopaque dicalcium silicate cement facilitates dentinogenesis. Front Mater. 2021;8:738430.CrossRef
110.
go back to reference Leites AB, Baldissera EZ, Silva AF, et al. Histologic response and tenascin and fibronectin expression after pulp capping in pig primary teeth with mineral trioxide aggregate or calcium hydroxide. Oper Dent. 2011;36:448–56.PubMedCrossRef Leites AB, Baldissera EZ, Silva AF, et al. Histologic response and tenascin and fibronectin expression after pulp capping in pig primary teeth with mineral trioxide aggregate or calcium hydroxide. Oper Dent. 2011;36:448–56.PubMedCrossRef
111.
go back to reference Hoshika S, Koshiro K, Inoue S, et al. Interfacial characterization of a conventional glass-ionomer cement after functioning for 1-year in vivo. J Adhes Dent. 2022;24:203–8.PubMed Hoshika S, Koshiro K, Inoue S, et al. Interfacial characterization of a conventional glass-ionomer cement after functioning for 1-year in vivo. J Adhes Dent. 2022;24:203–8.PubMed
112.
go back to reference Kitasako Y, Ikeda M, Tagami J. Pulpal responses to bacterial contamination following dentin bridging beneath hard-setting calcium hydroxide and self-etching adhesive resin system. Dent Traumatol. 2008;24:201–6.PubMedCrossRef Kitasako Y, Ikeda M, Tagami J. Pulpal responses to bacterial contamination following dentin bridging beneath hard-setting calcium hydroxide and self-etching adhesive resin system. Dent Traumatol. 2008;24:201–6.PubMedCrossRef
113.
go back to reference Negm AM, Hassanien EE, Abu-Seida AM, Nagy MM. Biological evaluation of a new pulp capping material developed from Portland cement. Exp Toxicol Pathol. 2017;69:115–22.PubMedCrossRef Negm AM, Hassanien EE, Abu-Seida AM, Nagy MM. Biological evaluation of a new pulp capping material developed from Portland cement. Exp Toxicol Pathol. 2017;69:115–22.PubMedCrossRef
114.
go back to reference Mounir MMF, Farsi JMA, Alhazzazi TY, Matar MA, El-Housseiny AA. Characterization of the apical bridge barrier formed following amelogenin apexification. BMC Oral Health. 2018;18:201.PubMedPubMedCentralCrossRef Mounir MMF, Farsi JMA, Alhazzazi TY, Matar MA, El-Housseiny AA. Characterization of the apical bridge barrier formed following amelogenin apexification. BMC Oral Health. 2018;18:201.PubMedPubMedCentralCrossRef
115.
go back to reference Lee H, Shin Y, Kim SO, et al. Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in dogs’ teeth. J Endod. 2015;41:1317–24.PubMedCrossRef Lee H, Shin Y, Kim SO, et al. Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in dogs’ teeth. J Endod. 2015;41:1317–24.PubMedCrossRef
116.
go back to reference Elwardany EHM, Sherif HAE, Ali MM, Mahmoud HM. Evaluation of immunohistochemical activity of dentin-pulp organs of dog’s teeth after stimulation with laser, MTA, and theracal therapies. Int J Health Sci. 2022; 5514–28. Elwardany EHM, Sherif HAE, Ali MM, Mahmoud HM. Evaluation of immunohistochemical activity of dentin-pulp organs of dog’s teeth after stimulation with laser, MTA, and theracal therapies. Int J Health Sci. 2022; 5514–28.
117.
go back to reference Ishii Y, Fujita T, Okubo N, et al. Effect of basic fibroblast growth factor (FGF-2) in combination with beta tricalcium phosphate on root coverage in dog. Acta Odontol Scand. 2013;71:325–32.PubMedCrossRef Ishii Y, Fujita T, Okubo N, et al. Effect of basic fibroblast growth factor (FGF-2) in combination with beta tricalcium phosphate on root coverage in dog. Acta Odontol Scand. 2013;71:325–32.PubMedCrossRef
118.
go back to reference Kang CM, Hwang J, Song JS, et al. Effects of three calcium silicate cements on inflammatory response and mineralization-inducing potentials in a dog pulpotomy model. Materials (Basel). 2018;11(6):899.PubMedCrossRef Kang CM, Hwang J, Song JS, et al. Effects of three calcium silicate cements on inflammatory response and mineralization-inducing potentials in a dog pulpotomy model. Materials (Basel). 2018;11(6):899.PubMedCrossRef
119.
go back to reference Santos JM, Marques JA, Diogo P, et al. Influence of preoperative pulp inflammation in the outcome of full pulpotomy using a dog model. J Endod. 2021;47:1417–26.PubMedCrossRef Santos JM, Marques JA, Diogo P, et al. Influence of preoperative pulp inflammation in the outcome of full pulpotomy using a dog model. J Endod. 2021;47:1417–26.PubMedCrossRef
Metadata
Title
Animal models and related techniques for dentin study
Authors
Shuai Wang
Yan Tu
Hao Yu
Zhen Li
Jinqiu Feng
Shangfeng Liu
Publication date
03-09-2024
Publisher
Springer Nature Singapore
Published in
Odontology / Issue 1/2025
Print ISSN: 1618-1247
Electronic ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-024-00987-1