Skip to main content
Top

Open Access 29-01-2025 | Angiography | Original Paper

Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation

Authors: Jihye Chae, Jihoon Kweon, Gyung-Min Park, Sangwoo Park, Hyuck Jun Yoon, Cheol Hyun Lee, Keunwoo Park, Hyunseol Lee, Do-Yoon Kang, Pil Hyung Lee, Soo-Jin Kang, Duk-Woo Park, Seung-Whan Lee, Young-Hak Kim, Cheol Whan Lee, Seong-Wook Park, Seung-Jung Park, Jung-Min Ahn

Published in: The International Journal of Cardiovascular Imaging

Login to get access

Abstract

Artificial intelligence-based quantitative coronary angiography (AI-QCA) was introduced to address manual QCA’s limitations in reproducibility and correction process. The present study aimed to assess the performance of an updated AI-QCA solution (MPXA-2000) in lesion detection and quantification using manual QCA as the reference standard, and to demonstrate its superiority over visual estimation. This multi-center retrospective study analyzed 1,076 coronary angiography images obtained from 420 patients, comparing AI-QCA and visual estimation against manual QCA as the reference standard. A lesion was classified as ‘detected’ when the minimum lumen diameter (MLD) identified by manual QCA fell within the boundaries of the lesion delineated by AI-QCA or visual estimation. The detected lesions were evaluated in terms of diameter stenosis (DS), MLD, and lesion length (LL). AI-QCA accurately detected lesions with a sensitivity of 93% (1705/1828) and showed strong correlations with manual QCA for DS, MLD, and LL (R² = 0.65, 0.83 and 0.71, respectively). In views targeting the major vessels, the proportion of undetected lesions by AI-QCA was less than 4% (56/1492). For lesions in the side branches, AI-QCA also demonstrated high sensitivity (> 92%) in detecting them. Compared to visual estimation, AI-QCA showed significantly better lesion detection capability (93% vs. 69%, p < 0.001), and had a higher probability of detecting all lesions in images with multiple lesions (86% vs. 33%, p < 0.001). The updated AI-QCA demonstrated robust performance in lesion detection and quantification without operator intervention, enabling reproducible vessel analysis. The automated process of AI-QCA has the potential to optimize angiography-guided interventions by providing quantitative metrics.
Appendix
Available only for authorised users
Literature
1.
go back to reference Serruys PW, Reiber JHC, Wijns W, Brand MVD, Kooijman CJ, Ten Katen HJ et al (1984) Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography: Diameter versus densitometric area measurements. Am J Cardiol 54:482–488CrossRefPubMed Serruys PW, Reiber JHC, Wijns W, Brand MVD, Kooijman CJ, Ten Katen HJ et al (1984) Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography: Diameter versus densitometric area measurements. Am J Cardiol 54:482–488CrossRefPubMed
2.
go back to reference Reiber J, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands J et al (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 71:280–288CrossRefPubMed Reiber J, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands J et al (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 71:280–288CrossRefPubMed
3.
go back to reference Vas R, Eigler N, Miyazono C, Pfaff JM, Resser KJ, Weiss M et al (1985) Digital quantification eliminates intraobserver and interobserver variability in the evaluation of coronary artery stenosis. Am J Cardiol 56:718–723CrossRefPubMed Vas R, Eigler N, Miyazono C, Pfaff JM, Resser KJ, Weiss M et al (1985) Digital quantification eliminates intraobserver and interobserver variability in the evaluation of coronary artery stenosis. Am J Cardiol 56:718–723CrossRefPubMed
4.
go back to reference Grundeken MJ, Ishibashi Y, Généreux P, LaSalle L, Iqbal J, Wykrzykowska JJ et al (2015) Inter-core lab variability in analyzing quantitative coronary angiography for bifurcation lesions: a post-hoc analysis of a randomized trial. JACC Cardiovasc Interv 8:305–314CrossRefPubMed Grundeken MJ, Ishibashi Y, Généreux P, LaSalle L, Iqbal J, Wykrzykowska JJ et al (2015) Inter-core lab variability in analyzing quantitative coronary angiography for bifurcation lesions: a post-hoc analysis of a randomized trial. JACC Cardiovasc Interv 8:305–314CrossRefPubMed
5.
go back to reference Menezes MN, Silva JL, Silva B, Rodrigues T, Guerreiro C, Guedes JP et al (2023) Coronary X-ray angiography segmentation using Artificial Intelligence: a multicentric validation study of a deep learning model. Int J Cardiovasc Imaging 39:1385–1396CrossRef Menezes MN, Silva JL, Silva B, Rodrigues T, Guerreiro C, Guedes JP et al (2023) Coronary X-ray angiography segmentation using Artificial Intelligence: a multicentric validation study of a deep learning model. Int J Cardiovasc Imaging 39:1385–1396CrossRef
6.
go back to reference Liu X, Wang X, Chen D, Zhang H (2023) Automatic quantitative coronary analysis based on deep learning. Appl Sci 13:2975CrossRef Liu X, Wang X, Chen D, Zhang H (2023) Automatic quantitative coronary analysis based on deep learning. Appl Sci 13:2975CrossRef
7.
go back to reference Nobre Menezes M, Silva B, Silva JL, Rodrigues T, Marques JS, Guerreiro C et al (2023) Segmentation of X-ray coronary angiography with an artificial intelligence deep learning model: impact in operator visual assessment of coronary stenosis severity. Catheter Cardiovasc Interv 102:631–640CrossRefPubMed Nobre Menezes M, Silva B, Silva JL, Rodrigues T, Marques JS, Guerreiro C et al (2023) Segmentation of X-ray coronary angiography with an artificial intelligence deep learning model: impact in operator visual assessment of coronary stenosis severity. Catheter Cardiovasc Interv 102:631–640CrossRefPubMed
8.
go back to reference Du T, Xie L, Zhang H, Liu X, Wang X, Chen D et al (2021) Training and validation of a deep learning architecture for the automatic analysis of coronary angiography: automatic recognition of coronary angiography. EuroIntervention 17:32CrossRefPubMedPubMedCentral Du T, Xie L, Zhang H, Liu X, Wang X, Chen D et al (2021) Training and validation of a deep learning architecture for the automatic analysis of coronary angiography: automatic recognition of coronary angiography. EuroIntervention 17:32CrossRefPubMedPubMedCentral
9.
go back to reference Zhang D, Zhang H, Zhang H, Xu L, Zhang J, Gao Z (2023) Distance transform learning for structural and functional analysis of coronary artery from dual-view angiography. Future Generation Comput Syst 145:136–149CrossRef Zhang D, Zhang H, Zhang H, Xu L, Zhang J, Gao Z (2023) Distance transform learning for structural and functional analysis of coronary artery from dual-view angiography. Future Generation Comput Syst 145:136–149CrossRef
10.
go back to reference Ben-Assa E, Salman AA, Cafri C, Roguin A, Hellou E, Koifman E et al (2023) Performance of a novel artificial intelligence software developed to derive coronary fractional flow reserve values from diagnostic angiograms. Coron Artery Dis 34:533–541CrossRefPubMedPubMedCentral Ben-Assa E, Salman AA, Cafri C, Roguin A, Hellou E, Koifman E et al (2023) Performance of a novel artificial intelligence software developed to derive coronary fractional flow reserve values from diagnostic angiograms. Coron Artery Dis 34:533–541CrossRefPubMedPubMedCentral
11.
go back to reference Avram R, Olgin JE, Ahmed Z, Verreault-Julien L, Wan A, Barrios J et al (2023) CathAI: fully automated coronary angiography interpretation and stenosis estimation. Npj Digit Med 6:142CrossRefPubMedPubMedCentral Avram R, Olgin JE, Ahmed Z, Verreault-Julien L, Wan A, Barrios J et al (2023) CathAI: fully automated coronary angiography interpretation and stenosis estimation. Npj Digit Med 6:142CrossRefPubMedPubMedCentral
12.
go back to reference Kim YI, Roh J-H, Kweon J, Kwon H, Chae J, Park K et al (2024) Artificial intelligence-based quantitative coronary angiography of major vessels using deep-learning. Int J Cardiol 405:131945CrossRefPubMed Kim YI, Roh J-H, Kweon J, Kwon H, Chae J, Park K et al (2024) Artificial intelligence-based quantitative coronary angiography of major vessels using deep-learning. Int J Cardiol 405:131945CrossRefPubMed
13.
go back to reference Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV) 2018, pp 801–18 Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV) 2018, pp 801–18
14.
go back to reference Tan M, Le Q, Efficientnet (2019) Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning: PMLR; pp. 6105-14 Tan M, Le Q, Efficientnet (2019) Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning: PMLR; pp. 6105-14
15.
go back to reference Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J, Unet++ (2018) A nested u-net architecture for medical image segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, New York, pp 3–11 Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J, Unet++ (2018) A nested u-net architecture for medical image segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, New York, pp 3–11
16.
go back to reference Qin X, Zhang Z, Huang C, Dehghan M, Zaiane OR, Jagersand M (2020) U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recogn 106:107404CrossRef Qin X, Zhang Z, Huang C, Dehghan M, Zaiane OR, Jagersand M (2020) U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recogn 106:107404CrossRef
17.
go back to reference Iyer K, Najarian CP, Fattah AA, Arthurs CJ, Soroushmehr SMR, Subban V et al (2021) AngioNet: a convolutional neural network for Vessel Segmentation in X-ray angiography. Sci Rep 11:18066 Iyer K, Najarian CP, Fattah AA, Arthurs CJ, Soroushmehr SMR, Subban V et al (2021) AngioNet: a convolutional neural network for Vessel Segmentation in X-ray angiography. Sci Rep 11:18066
18.
go back to reference Wang L, Liang D, Yin X, Qiu J, Yang Z, Xing J et al (2020) Coronary artery segmentation in angiographic videos utilizing spatial-temporal information. BMC Med Imaging 20:110CrossRefPubMedPubMedCentral Wang L, Liang D, Yin X, Qiu J, Yang Z, Xing J et al (2020) Coronary artery segmentation in angiographic videos utilizing spatial-temporal information. BMC Med Imaging 20:110CrossRefPubMedPubMedCentral
19.
go back to reference Omori H, Witberg G, Kawase Y, Tanigaki T, Okamoto S, Hirata T et al (2019) Angiogram based fractional flow reserve in patients with dual/triple vessel coronary artery disease. Int J Cardiol 283:17–22CrossRefPubMed Omori H, Witberg G, Kawase Y, Tanigaki T, Okamoto S, Hirata T et al (2019) Angiogram based fractional flow reserve in patients with dual/triple vessel coronary artery disease. Int J Cardiol 283:17–22CrossRefPubMed
20.
go back to reference Serruys PW, Chichareon P, Modolo R, Leaman DM, Reiber JH, Emanuelsson H et al (2020) The SYNTAX score on its way out or… towards artificial intelligence: part I. EuroIntervention 16:44–59CrossRefPubMed Serruys PW, Chichareon P, Modolo R, Leaman DM, Reiber JH, Emanuelsson H et al (2020) The SYNTAX score on its way out or… towards artificial intelligence: part I. EuroIntervention 16:44–59CrossRefPubMed
21.
go back to reference Hae H, Kang S-J, Kim W-J, Choi S-Y, Lee J-G, Bae Y et al (2018) Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation. PLoS Med 15:e1002693CrossRefPubMedPubMedCentral Hae H, Kang S-J, Kim W-J, Choi S-Y, Lee J-G, Bae Y et al (2018) Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation. PLoS Med 15:e1002693CrossRefPubMedPubMedCentral
22.
go back to reference Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR et al (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC: Cardiovasc Interventions 7:768–777 Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR et al (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC: Cardiovasc Interventions 7:768–777
23.
go back to reference Neleman T, Masdjedi K, Van Zandvoort LJ, Tomaniak M, Ligthart JM, Witberg KT et al (2021) Extended validation of novel 3D quantitative coronary angiography-based software to calculate vFFR: the FAST EXTEND study. Cardiovasc Imaging 14:504–506 Neleman T, Masdjedi K, Van Zandvoort LJ, Tomaniak M, Ligthart JM, Witberg KT et al (2021) Extended validation of novel 3D quantitative coronary angiography-based software to calculate vFFR: the FAST EXTEND study. Cardiovasc Imaging 14:504–506
24.
go back to reference Fearon WF, Achenbach S, Engstrom T, Assali A, Shlofmitz R, Jeremias A et al (2019) Accuracy of fractional flow reserve derived from coronary angiography. Circulation 139:477–484CrossRefPubMed Fearon WF, Achenbach S, Engstrom T, Assali A, Shlofmitz R, Jeremias A et al (2019) Accuracy of fractional flow reserve derived from coronary angiography. Circulation 139:477–484CrossRefPubMed
25.
go back to reference Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M et al (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC: Cardiovasc Intervent 9:2024–2035 Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M et al (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC: Cardiovasc Intervent 9:2024–2035
26.
go back to reference Fazel R, Yeh RW, Cohen DJ, Rao SV, Li S, Song Y et al (2023) Intravascular imaging during percutaneous coronary intervention: temporal trends and clinical outcomes in the USA. Eur Heart J 44:3845–3855CrossRefPubMedPubMedCentral Fazel R, Yeh RW, Cohen DJ, Rao SV, Li S, Song Y et al (2023) Intravascular imaging during percutaneous coronary intervention: temporal trends and clinical outcomes in the USA. Eur Heart J 44:3845–3855CrossRefPubMedPubMedCentral
27.
go back to reference Kim Y, Park H, Yoon HJ, Suh J, Kang SH, Lim YH et al (2024) Fully automated quantitative coronary angiography versus optical coherence tomography guidance for coronary stent implantation (FLASH): Study protocol for a randomized controlled non-inferiority trial. Am Heart J Kim Y, Park H, Yoon HJ, Suh J, Kang SH, Lim YH et al (2024) Fully automated quantitative coronary angiography versus optical coherence tomography guidance for coronary stent implantation (FLASH): Study protocol for a randomized controlled non-inferiority trial. Am Heart J
Metadata
Title
Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation
Authors
Jihye Chae
Jihoon Kweon
Gyung-Min Park
Sangwoo Park
Hyuck Jun Yoon
Cheol Hyun Lee
Keunwoo Park
Hyunseol Lee
Do-Yoon Kang
Pil Hyung Lee
Soo-Jin Kang
Duk-Woo Park
Seung-Whan Lee
Young-Hak Kim
Cheol Whan Lee
Seong-Wook Park
Seung-Jung Park
Jung-Min Ahn
Publication date
29-01-2025
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-025-03342-9

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now