Skip to main content
Top
Published in:

Open Access 28-09-2024 | Original Article

Anatomy and connectivity of the Göttingen minipig subgenual cortex (Brodmann area 25 homologue)

Authors: Andreas N. Glud, Hamed Zaer, Dariusz Orlowski, Mette Slot Nielsen, Jens Christian H. Sørensen, Carsten R. Bjarkam

Published in: Brain Structure and Function | Issue 8/2024

Login to get access

Abstract

Background

The subgenual gyrus is a promising target for deep brain stimulation (DBS) against depression. However, to optimize this treatment modality, we need translational animal models.

Aim

To describe the anatomy and connectivity of the Göttingen minipig subgenual area (sgC).

Materials and methods

The frontal pole of 5 minipigs was cryosectioned into 40 μm coronal and horizontal sections and stained with Nissl and NeuN-immunohistochemistry to visualize cytoarchitecture and cortical lamination. Eight animals were unilaterally stereotaxically injected in the sgC with anterograde (BDA) and retrograde (FluoroGold) tracers to reveal the sgC connectivity.

Results

In homology with human nomenclature (Brodmann 1909), the minipig sgC can be subdivided into three distinct areas named area 25 (BA25), area 33 (BA33), and indusium griseum (IG). BA25 is a thin agranular cortex, approximately 1 mm thick. Characteristically, perpendicular to the pial surface, cell-poor cortical columns separate the otherwise cell-rich cortex of layer II, III and V. In layer V the cells are of similar size as seen in layer III, while layer VI contains more widely dispersed neurons. BA33 is less differentiated than BA25. Accordingly, the cortex is thinner and displays a complete lack of laminar differentiation due to diffusely arranged small, lightly stained neurons. It abuts the IG, which is a neuron-dense band of heavily stained small neurons separating BA33 directly from the corpus callosum and the posteriorly located septal nuclear area.
Due to the limited area size and nearby location to the lateral ventricle and longitudinal cerebral fissure, only 3/8 animals received sgC injections with an antero- and retrograde tracer mixture. Retrograde tracing was seen primarily to the neighbouring ipsilateral ventral- and mPFC areas with some contralateral labelling as well. Prominent projections were furthermore observed from the ipsilateral insula, the medial aspect of the amygdala and the hippocampal formation, diencephalon and the brainstem ventral tegmental area. Anterograde tracing revealed prominent projections to the neighbouring medial prefrontal, mPFC and cingulate cortex, while moderate staining was noted in the hippocampus and adjoining piriform cortex.

Conclusion

The minipig sgC displays a cytoarchitectonic pattern and connectivity like the human and may be well suited for further translational studies on BA25-DBS against depression.
Literature
go back to reference An X, Bandler R, Ongür D, Price JL (1998) Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 401:455–479CrossRefPubMed An X, Bandler R, Ongür D, Price JL (1998) Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 401:455–479CrossRefPubMed
go back to reference Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde, in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde, in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig
go back to reference Ettrup KS, Sørensen JC, Rodell A et al (2012) Hypothalamic deep brain stimulation influences autonomic and limbic circuitry involved in the regulation of aggression and cardiocerebrovascular control in the Göttingen minipig. Stereotact Funct Neurosurg 90:281–291. https://doi.org/10.1159/000338087CrossRefPubMed Ettrup KS, Sørensen JC, Rodell A et al (2012) Hypothalamic deep brain stimulation influences autonomic and limbic circuitry involved in the regulation of aggression and cardiocerebrovascular control in the Göttingen minipig. Stereotact Funct Neurosurg 90:281–291. https://​doi.​org/​10.​1159/​000338087CrossRefPubMed
go back to reference Freedman LJ, Insel TR, Smith Y (2000) Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol 421:172–188CrossRefPubMed Freedman LJ, Insel TR, Smith Y (2000) Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol 421:172–188CrossRefPubMed
go back to reference Glud AN, Hedegaard C, Nielsen MS et al (2011) Direct MRI-guided stereotaxic viral mediated gene transfer of alpha-synuclein in the Göttingen minipig CNS. Acta Neurobiol Exp 71:508–518CrossRef Glud AN, Hedegaard C, Nielsen MS et al (2011) Direct MRI-guided stereotaxic viral mediated gene transfer of alpha-synuclein in the Göttingen minipig CNS. Acta Neurobiol Exp 71:508–518CrossRef
go back to reference Joyce MKP, Barbas H (2018) Cortical connections position primate area 25 as a keystone for interoception, emotion, and memory. J Neurosci 38(7):1677–1698CrossRefPubMedPubMedCentral Joyce MKP, Barbas H (2018) Cortical connections position primate area 25 as a keystone for interoception, emotion, and memory. J Neurosci 38(7):1677–1698CrossRefPubMedPubMedCentral
go back to reference Joyce MKP, Wang J, Barbas H (2023) Subgenual and hippocampal pathways in amygdala are set to balance affect and context processing. J Neurosci 43(17):3061–3080CrossRefPubMedPubMedCentral Joyce MKP, Wang J, Barbas H (2023) Subgenual and hippocampal pathways in amygdala are set to balance affect and context processing. J Neurosci 43(17):3061–3080CrossRefPubMedPubMedCentral
go back to reference Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660CrossRefPubMed Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660CrossRefPubMed
go back to reference Nørgaard Glud A, Hedegaard C, Nielsen MS et al (2010) Direct gene transfer in the Gottingen minipig CNS using stereotaxic lentiviral microinjections. Acta Neurobiol Exp 70:308–315CrossRef Nørgaard Glud A, Hedegaard C, Nielsen MS et al (2010) Direct gene transfer in the Gottingen minipig CNS using stereotaxic lentiviral microinjections. Acta Neurobiol Exp 70:308–315CrossRef
go back to reference Ongür D, An X, Price JL (1998) Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 401:480–505CrossRefPubMed Ongür D, An X, Price JL (1998) Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 401:480–505CrossRefPubMed
go back to reference Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press Inc., San Diego Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press Inc., San Diego
go back to reference Roberts AC, Clarke HF (2019) Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proc Natl Acad Sci U S A 116(52):26297–26304CrossRefPubMedPubMedCentral Roberts AC, Clarke HF (2019) Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proc Natl Acad Sci U S A 116(52):26297–26304CrossRefPubMedPubMedCentral
go back to reference Stephan H (1951) Vergleichende Untersuchungen über Feinbau des Hirnes von Wild- und Haustieren. Zoologische Jahrbuch, Abteilung Für Anatomie und Ontogenie Des Tieren 71:487–586 Stephan H (1951) Vergleichende Untersuchungen über Feinbau des Hirnes von Wild- und Haustieren. Zoologische Jahrbuch, Abteilung Für Anatomie und Ontogenie Des Tieren 71:487–586
go back to reference Vogt BA, Vogt LJ (2004) Cingulate cortex and disease models. In: Paxinos G (ed) The rat nervous system. Academic, Oxford, pp 705–727CrossRef Vogt BA, Vogt LJ (2004) Cingulate cortex and disease models. In: Paxinos G (ed) The rat nervous system. Academic, Oxford, pp 705–727CrossRef
go back to reference Vogt BA, Hof PR, Vogt LJ (2004) Cingulate gyrus. In: Paxinos G, Mai J (eds) The human nervous system. Elsevier, Oxford, pp 915–947CrossRef Vogt BA, Hof PR, Vogt LJ (2004) Cingulate gyrus. In: Paxinos G, Mai J (eds) The human nervous system. Elsevier, Oxford, pp 915–947CrossRef
go back to reference Wallis CU, Cardinal RN, Alexander L, Roberts AC, Clarke HF (2017) Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion. Proc Natl Acad Sci U S A 114(20):E4075–E4084CrossRefPubMedPubMedCentral Wallis CU, Cardinal RN, Alexander L, Roberts AC, Clarke HF (2017) Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion. Proc Natl Acad Sci U S A 114(20):E4075–E4084CrossRefPubMedPubMedCentral
go back to reference Zilles K (2004) Achitecture of the human cerebral cortex. In: Paxinos G, Mai J (eds) The human nervous system. Elsevier, Oxford Zilles K (2004) Achitecture of the human cerebral cortex. In: Paxinos G, Mai J (eds) The human nervous system. Elsevier, Oxford
Metadata
Title
Anatomy and connectivity of the Göttingen minipig subgenual cortex (Brodmann area 25 homologue)
Authors
Andreas N. Glud
Hamed Zaer
Dariusz Orlowski
Mette Slot Nielsen
Jens Christian H. Sørensen
Carsten R. Bjarkam
Publication date
28-09-2024
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 8/2024
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-024-02855-8

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more