Skip to main content
Top
Published in:

Open Access 01-12-2024 | Alzheimer's Disease | Research

The role of cerebrospinal fluid metabolites in mediating the impact of lipids on Late-Onset Alzheimer’s Disease: a two-step mendelian randomization analysis

Authors: Jie Jie, Yonglu Gong, Hongbo Hu, Su Liu

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Although research has indicated correlations between lipids, cerebrospinal fluid (CSF) metabolites, and Late-Onset Alzheimer’s Disease (LOAD), the specific causal relationships among these elements, as well as the roles and mechanisms of the cerebrospinal fluid metabolites, remain unclear.

Methods

Statistical datasets derived from Genome-Wide Association Studies (GWAS) were utilized to assess the bidirectional causal relationships between lipids and LOAD. Subsequently, genetic variants associated with CSF metabolites and established lipids underwent a two-step Mendelian randomization (MR) analysis to explore potential mediators and analyze mediation effects. Sensitivity analyses were employed to assess the robustness of the detection systems.

Results

Genetically predicted cholesterol (IVW OR = 0.989; 95% CI 0.982–0.996) was found to reduce the risk of LOAD, whereas Phosphatidylcholine (PC) (18:1_0:0) (IVW OR = 1.015; 95% CI 1.005–1.025) posed a risk factor. The potential mediator, CSF metabolite N-acetylneuraminate (NeuAC), was identified with a mediation proportion of 21.02% (3.25%, 45.50%). No pleiotropy or heterogeneity was detected across MR analyses.

Conclusions

The findings underscore the pivotal role of CSF metabolomics in elucidating the lipid-mediated pathogenesis of LOAD, highlighting potential diagnostic and preventative biomarkers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alzheimer’s Disease facts and figures. Alzheimers Dement. 2022;18:700–89. Alzheimer’s Disease facts and figures. Alzheimers Dement. 2022;18:700–89.
2.
go back to reference Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2019;18:88–106.CrossRef Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2019;18:88–106.CrossRef
3.
go back to reference Hou X-H, Suckling J, Shen X-N, Liu Y, Zuo C-T, Huang Y-Y, et al. Multipredictor risk models for predicting individual risk of Alzheimer’s disease. J Translational Med. 2023;21:768.CrossRef Hou X-H, Suckling J, Shen X-N, Liu Y, Zuo C-T, Huang Y-Y, et al. Multipredictor risk models for predicting individual risk of Alzheimer’s disease. J Translational Med. 2023;21:768.CrossRef
4.
go back to reference Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.PubMedCrossRef Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.PubMedCrossRef
5.
go back to reference Lau V, Ramer L, Tremblay M-È. An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer’s disease. Nat Commun. 2023;14:1670.PubMedPubMedCentralCrossRef Lau V, Ramer L, Tremblay M-È. An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer’s disease. Nat Commun. 2023;14:1670.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.PubMedPubMedCentralCrossRef Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.PubMedPubMedCentralCrossRef
8.
go back to reference He J, Huang M, Li N, Zha L, Yuan J. Genetic Association and Potential Mediators between Sarcopenia and Coronary Heart Disease: A Bidirectional Two-Sample, Two-Step Mendelian Randomization Study. Nutrients. 2023;15:3013.PubMedPubMedCentralCrossRef He J, Huang M, Li N, Zha L, Yuan J. Genetic Association and Potential Mediators between Sarcopenia and Coronary Heart Disease: A Bidirectional Two-Sample, Two-Step Mendelian Randomization Study. Nutrients. 2023;15:3013.PubMedPubMedCentralCrossRef
10.
go back to reference Mills JD, Nalpathamkalam T, Jacobs HIL, Janitz C, Merico D, Hu P, et al. RNA-Seq analysis of the parietal cortex in Alzheimer’s disease reveals alternatively spliced isoforms related to lipid metabolism. Neurosci Lett. 2013;536:90–5.PubMedCrossRef Mills JD, Nalpathamkalam T, Jacobs HIL, Janitz C, Merico D, Hu P, et al. RNA-Seq analysis of the parietal cortex in Alzheimer’s disease reveals alternatively spliced isoforms related to lipid metabolism. Neurosci Lett. 2013;536:90–5.PubMedCrossRef
11.
go back to reference Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661–6.PubMedCrossRef Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661–6.PubMedCrossRef
12.
13.
go back to reference Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite Profiling of Alzheimer’s Disease Cerebrospinal Fluid. PLoS ONE. 2012;7:e31501.PubMedPubMedCentralCrossRef Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite Profiling of Alzheimer’s Disease Cerebrospinal Fluid. PLoS ONE. 2012;7:e31501.PubMedPubMedCentralCrossRef
14.
go back to reference Nagata Y, Hirayama A, Ikeda S, Shirahata A, Shoji F, Maruyama M, et al. Comparative analysis of cerebrospinal fluid metabolites in Alzheimer’s disease and idiopathic normal pressure hydrocephalus in a Japanese cohort. Biomark Res. 2018;6:5.PubMedPubMedCentralCrossRef Nagata Y, Hirayama A, Ikeda S, Shirahata A, Shoji F, Maruyama M, et al. Comparative analysis of cerebrospinal fluid metabolites in Alzheimer’s disease and idiopathic normal pressure hydrocephalus in a Japanese cohort. Biomark Res. 2018;6:5.PubMedPubMedCentralCrossRef
15.
go back to reference Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol. 2021;4:63.PubMedPubMedCentralCrossRef Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol. 2021;4:63.PubMedPubMedCentralCrossRef
16.
go back to reference Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000;7:321–31.PubMedCrossRef Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000;7:321–31.PubMedCrossRef
17.
go back to reference Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol. 2000;57:1439–43.PubMedCrossRef Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol. 2000;57:1439–43.PubMedCrossRef
18.
go back to reference Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nat Neurosci. 2003;6:345–51.PubMedCrossRef Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nat Neurosci. 2003;6:345–51.PubMedCrossRef
19.
go back to reference Wang Q, Zang F, He C, Zhang Z, Xie C. Alzheimer’s Disease Neuroimaging Initiative. Dyslipidemia induced large-scale network connectivity abnormality facilitates cognitive decline in the Alzheimer’s disease. J Translational Med. 2022;20:567.CrossRef Wang Q, Zang F, He C, Zhang Z, Xie C. Alzheimer’s Disease Neuroimaging Initiative. Dyslipidemia induced large-scale network connectivity abnormality facilitates cognitive decline in the Alzheimer’s disease. J Translational Med. 2022;20:567.CrossRef
20.
go back to reference Davey Smith G, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.CrossRef Davey Smith G, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.CrossRef
21.
22.
go back to reference Smith GD, Ebrahim S. Mendelian randomization: Prospects, potentials, and limitations. Int J Epidemiol. 2004;33:30–42.PubMedCrossRef Smith GD, Ebrahim S. Mendelian randomization: Prospects, potentials, and limitations. Int J Epidemiol. 2004;33:30–42.PubMedCrossRef
23.
go back to reference Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.PubMedCrossRef Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.PubMedCrossRef
24.
go back to reference Qiu Y-F, Ye J, Xie J-J, Mao X-T, Liu Y-L, Fang Q, et al. Pancreatitis affects gut microbiota via metabolites and inflammatory cytokines: an exploratory two-step Mendelian randomisation study. Mol Genet Genomics. 2024;299:36.PubMedPubMedCentralCrossRef Qiu Y-F, Ye J, Xie J-J, Mao X-T, Liu Y-L, Fang Q, et al. Pancreatitis affects gut microbiota via metabolites and inflammatory cytokines: an exploratory two-step Mendelian randomisation study. Mol Genet Genomics. 2024;299:36.PubMedPubMedCentralCrossRef
25.
go back to reference Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA. 2021;326:1614–21.PubMedCrossRef Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA. 2021;326:1614–21.PubMedCrossRef
26.
go back to reference Ottensmann L, Tabassum R, Ruotsalainen SE, Gerl MJ, Klose C, Widén E, et al. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun. 2023;14:6934.PubMedPubMedCentralCrossRef Ottensmann L, Tabassum R, Ruotsalainen SE, Gerl MJ, Klose C, Widén E, et al. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun. 2023;14:6934.PubMedPubMedCentralCrossRef
27.
go back to reference Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53:1276–82.PubMedPubMedCentralCrossRef Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53:1276–82.PubMedPubMedCentralCrossRef
28.
go back to reference Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakanishi T, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet. 2023;55:44–53.PubMedPubMedCentralCrossRef Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakanishi T, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet. 2023;55:44–53.PubMedPubMedCentralCrossRef
29.
go back to reference Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrology: JASN. 2016;27:3253–65.PubMedPubMedCentralCrossRef Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrology: JASN. 2016;27:3253–65.PubMedPubMedCentralCrossRef
30.
go back to reference Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC Med. 2023;21:66.PubMedPubMedCentralCrossRef Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC Med. 2023;21:66.PubMedPubMedCentralCrossRef
31.
go back to reference Lin Z, Deng Y, Pan W. Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model. PLoS Genet. 2021;17:e1009922.PubMedPubMedCentralCrossRef Lin Z, Deng Y, Pan W. Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model. PLoS Genet. 2021;17:e1009922.PubMedPubMedCentralCrossRef
32.
go back to reference Burgess S, Butterworth A, Thompson SG. Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. Genet Epidemiol. 2013;37:658–65.PubMedPubMedCentralCrossRef Burgess S, Butterworth A, Thompson SG. Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. Genet Epidemiol. 2013;37:658–65.PubMedPubMedCentralCrossRef
33.
go back to reference Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40:304–14.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40:304–14.PubMedPubMedCentralCrossRef
34.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.PubMedPubMedCentralCrossRef
35.
go back to reference Burgess S, Daniel RM, Butterworth AS, Thompson SG, the EPIC-InterAct Consortium. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol. 2015;44:484–95.PubMedCrossRef Burgess S, Daniel RM, Butterworth AS, Thompson SG, the EPIC-InterAct Consortium. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol. 2015;44:484–95.PubMedCrossRef
36.
go back to reference Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol. 2012;41:161–76.PubMedPubMedCentralCrossRef Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol. 2012;41:161–76.PubMedPubMedCentralCrossRef
38.
go back to reference Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.PubMedPubMedCentralCrossRef Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.PubMedPubMedCentralCrossRef
39.
go back to reference Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PMM. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol. 2015;68:299–306.PubMedCrossRef Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PMM. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol. 2015;68:299–306.PubMedCrossRef
40.
go back to reference Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51:1173–82.PubMedCrossRef Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51:1173–82.PubMedCrossRef
41.
go back to reference Anstey KJ, Lipnicki DM, Low L-F. Cholesterol as a risk factor for dementia and cognitive decline: A systematic review of prospective studies with meta-analysis. Am J Geriatric Psychiatry: Official J Am Association Geriatric Psychiatry. 2008;16:343–54.CrossRef Anstey KJ, Lipnicki DM, Low L-F. Cholesterol as a risk factor for dementia and cognitive decline: A systematic review of prospective studies with meta-analysis. Am J Geriatric Psychiatry: Official J Am Association Geriatric Psychiatry. 2008;16:343–54.CrossRef
42.
go back to reference Notkola IL, Sulkava R, Pekkanen J, Erkinjuntti T, Ehnholm C, Kivinen P, et al. Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology. 1998;17:14–20.PubMedCrossRef Notkola IL, Sulkava R, Pekkanen J, Erkinjuntti T, Ehnholm C, Kivinen P, et al. Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology. 1998;17:14–20.PubMedCrossRef
43.
go back to reference Mielke MM, Zandi PP, Sjögren M, Gustafson D, Östling S, Steen B, et al. High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology. 2005;64:1689–95.PubMedCrossRef Mielke MM, Zandi PP, Sjögren M, Gustafson D, Östling S, Steen B, et al. High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology. 2005;64:1689–95.PubMedCrossRef
44.
45.
go back to reference Matsuzaki T, Sasaki K, Hata J, Hirakawa Y, Fujimi K, Ninomiya T, et al. Association of alzheimer disease pathology with abnormal lipid metabolism. Neurology. 2011;77:1068–75.PubMedCrossRef Matsuzaki T, Sasaki K, Hata J, Hirakawa Y, Fujimi K, Ninomiya T, et al. Association of alzheimer disease pathology with abnormal lipid metabolism. Neurology. 2011;77:1068–75.PubMedCrossRef
46.
go back to reference Anstey KJ, Ashby-Mitchell K, Peters R. Updating the evidence on the association between serum cholesterol and risk of late-life dementia: Review and meta-analysis. J Alzheimers Dis. 2017;56:215.PubMedPubMedCentralCrossRef Anstey KJ, Ashby-Mitchell K, Peters R. Updating the evidence on the association between serum cholesterol and risk of late-life dementia: Review and meta-analysis. J Alzheimers Dis. 2017;56:215.PubMedPubMedCentralCrossRef
47.
go back to reference Whiley L, Sen A, Heaton J, Proitsi P, García-Gómez D, Leung R, et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol Aging. 2014;35:271–8.PubMedCrossRef Whiley L, Sen A, Heaton J, Proitsi P, García-Gómez D, Leung R, et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol Aging. 2014;35:271–8.PubMedCrossRef
48.
go back to reference Frisardi V, Panza F, Seripa D, Farooqui T, Farooqui AA. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology. Prog Lipid Res. 2011;50:313–30.PubMedCrossRef Frisardi V, Panza F, Seripa D, Farooqui T, Farooqui AA. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology. Prog Lipid Res. 2011;50:313–30.PubMedCrossRef
49.
go back to reference Schaeffer EL, da Silva ER, Novaes B, de Skaf A, Gattaz HD. Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:1381–9.PubMedCrossRef Schaeffer EL, da Silva ER, Novaes B, de Skaf A, Gattaz HD. Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:1381–9.PubMedCrossRef
51.
go back to reference Wang B, Brand-Miller J. The role and potential of sialic acid in human nutrition. Eur J Clin Nutr. 2003;57:1351–69.PubMedCrossRef Wang B, Brand-Miller J. The role and potential of sialic acid in human nutrition. Eur J Clin Nutr. 2003;57:1351–69.PubMedCrossRef
52.
go back to reference Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration. Physiol Rev. 2014;94:461–518.PubMedPubMedCentralCrossRef Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration. Physiol Rev. 2014;94:461–518.PubMedPubMedCentralCrossRef
53.
go back to reference Schnaar RL. Glycolipid-mediated cell-cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys. 2004;426:163–72.PubMedCrossRef Schnaar RL. Glycolipid-mediated cell-cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys. 2004;426:163–72.PubMedCrossRef
54.
go back to reference Wang B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr. 2012;3:S465–72.CrossRef Wang B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr. 2012;3:S465–72.CrossRef
55.
go back to reference Wang B. Sialic Acid Is an Essential Nutrient for Brain Development and Cognition. Annu Rev Nutr. 2009;29:177–222.PubMedCrossRef Wang B. Sialic Acid Is an Essential Nutrient for Brain Development and Cognition. Annu Rev Nutr. 2009;29:177–222.PubMedCrossRef
56.
go back to reference Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol. 2014;49:498–532.PubMedCrossRef Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol. 2014;49:498–532.PubMedCrossRef
57.
go back to reference Banks WA, Erickson MA. The blood–brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37:26–32.PubMedCrossRef Banks WA, Erickson MA. The blood–brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37:26–32.PubMedCrossRef
58.
go back to reference Zhang SL, Yue Z, Arnold DM, Artiushin G, Sehgal A. A Circadian Clock in the Blood-Brain Barrier Regulates Xenobiotic Efflux. Cell. 2018;173:130–e13910.PubMedPubMedCentralCrossRef Zhang SL, Yue Z, Arnold DM, Artiushin G, Sehgal A. A Circadian Clock in the Blood-Brain Barrier Regulates Xenobiotic Efflux. Cell. 2018;173:130–e13910.PubMedPubMedCentralCrossRef
60.
go back to reference Shimomura Y, Kitaura Y. Physiological and pathological roles of branched-chain amino acids in the regulation of protein and energy metabolism and neurological functions. Pharmacol Res. 2018;133:215–7.PubMedCrossRef Shimomura Y, Kitaura Y. Physiological and pathological roles of branched-chain amino acids in the regulation of protein and energy metabolism and neurological functions. Pharmacol Res. 2018;133:215–7.PubMedCrossRef
61.
go back to reference Ibáñez C, Simó C, Barupal DK, Fiehn O, Kivipelto M, Cedazo-Mínguez A, et al. A new metabolomic workflow for early detection of Alzheimer’s disease. J Chromatogr A. 2013;1302:65–71.PubMedCrossRef Ibáñez C, Simó C, Barupal DK, Fiehn O, Kivipelto M, Cedazo-Mínguez A, et al. A new metabolomic workflow for early detection of Alzheimer’s disease. J Chromatogr A. 2013;1302:65–71.PubMedCrossRef
Metadata
Title
The role of cerebrospinal fluid metabolites in mediating the impact of lipids on Late-Onset Alzheimer’s Disease: a two-step mendelian randomization analysis
Authors
Jie Jie
Yonglu Gong
Hongbo Hu
Su Liu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-05796-2

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more