Skip to main content
Top
Published in:

Open Access 01-12-2024 | Alzheimer's Disease | Research

Impact of diabetes mellitus on the risk of Alzheimer’s disease: a mendelian randomization study

Authors: Weichao Wang, Jie Zhang, Man Zhang, Chengyuan Zhang, Huanli Liu, Wanlin Li, Yimeng Fan

Published in: BMC Neurology | Issue 1/2024

Login to get access

Abstract

Background

The impact of diabetes on the risk of Alzheimer’s disease remains uncertain. This study aimed to explore this issue from multiple perspectives by using the Mendelian randomization (MR) approach.

Methods

Instrumental variables for predicting six diabetic traits (including insulin and blood glucose), eight metabolic risk factors for diabetes (including total cholesterol and blood pressure), and seven diabetic genes were extracted from their summary data. These data were derived from multiple European cohorts and included 31,684 to 810,865 subjects respectively. The two-sample MR, multivariate MR, and summary-data-based Mendelian randomization (SMR) methods were employed to determine the associations of these traits or genes with the risk of Alzheimer’s disease.

Results

The two-sample MR showed that elevated fasting insulin and total cholesterol levels were associated with an increased risk of dementia in Alzheimer’s disease (P = 0.022, P = 0.041). Elevated systolic and diastolic blood pressure levels were associated with a decreased risk of dementia in Alzheimer’s disease (P = 0.036, P = 0.025). The multivariate MR reported that adjusting for telomere length (a well-established biomarker of aging) did not change these findings (P < 0.05). Additionally, the two-sample MR showed that type 1 and type 2 diabetes did not affect the risk of Alzheimer’s disease. The SMR also indicated that the diabetic genes did not affect the risk of this disease.

Conclusion

Multiple MR approaches concluded that fasting insulin, total cholesterol, and blood pressure, rather than diabetes, were potential metabolic variables that had an impact on the risk of Alzheimer’s disease. However, aging might not be involved in these correlations.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022;11:18.CrossRefPubMedPubMedCentral Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022;11:18.CrossRefPubMedPubMedCentral
3.
go back to reference Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and diabetes Mellitus in Alzheimer’s Disease. Cells. 2021;10:1236.CrossRefPubMedPubMedCentral Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and diabetes Mellitus in Alzheimer’s Disease. Cells. 2021;10:1236.CrossRefPubMedPubMedCentral
4.
go back to reference Wang KC, Woung LC, Tsai MT, Liu CC, Su YH, Li CY. Risk of Alzheimer’s disease in relation to diabetes: a population-based cohort study. Neuroepidemiology. 2012;38:237–44.CrossRefPubMed Wang KC, Woung LC, Tsai MT, Liu CC, Su YH, Li CY. Risk of Alzheimer’s disease in relation to diabetes: a population-based cohort study. Neuroepidemiology. 2012;38:237–44.CrossRefPubMed
5.
go back to reference Noguchi-Shinohara M, Yuki-Nozaki S, Abe C, Mori A, Horimoto M, Yokogawa M, et al. Diabetes Mellitus, elevated hemoglobin A1c, and Glycated Albumin Are Associated with the Presence of all-cause dementia and Alzheimer’s Disease: the JPSC-AD study. J Alzheimers Dis. 2022;85:235–47.CrossRefPubMed Noguchi-Shinohara M, Yuki-Nozaki S, Abe C, Mori A, Horimoto M, Yokogawa M, et al. Diabetes Mellitus, elevated hemoglobin A1c, and Glycated Albumin Are Associated with the Presence of all-cause dementia and Alzheimer’s Disease: the JPSC-AD study. J Alzheimers Dis. 2022;85:235–47.CrossRefPubMed
6.
go back to reference DiPietro NA. Methods in epidemiology: observational study designs. Pharmacotherapy. 2010;30:973–84.CrossRefPubMed DiPietro NA. Methods in epidemiology: observational study designs. Pharmacotherapy. 2010;30:973–84.CrossRefPubMed
7.
go back to reference Xue H, Zeng L, Liu S. Unraveling the link: exploring the causal relationship between diabetes, multiple sclerosis, migraine, and Alzheimer’s disease through mendelian randomization. Front Neurosci. 2023;17:1233601.CrossRefPubMedPubMedCentral Xue H, Zeng L, Liu S. Unraveling the link: exploring the causal relationship between diabetes, multiple sclerosis, migraine, and Alzheimer’s disease through mendelian randomization. Front Neurosci. 2023;17:1233601.CrossRefPubMedPubMedCentral
8.
go back to reference Litkowski EM, Logue MW, Zhang R, Charest BR, Lange EM, Hokanson JE, et al. Mendelian randomization study of diabetes and dementia in the million veteran program. Alzheimers Dement. 2023;19:4367–76.CrossRefPubMed Litkowski EM, Logue MW, Zhang R, Charest BR, Lange EM, Hokanson JE, et al. Mendelian randomization study of diabetes and dementia in the million veteran program. Alzheimers Dement. 2023;19:4367–76.CrossRefPubMed
9.
go back to reference Meng L, Wang Z, Ji HF, Shen L. Causal association evaluation of diabetes with Alzheimer’s disease and genetic analysis of antidiabetic drugs against Alzheimer’s disease. Cell Biosci. 2022;12:28.CrossRefPubMedPubMedCentral Meng L, Wang Z, Ji HF, Shen L. Causal association evaluation of diabetes with Alzheimer’s disease and genetic analysis of antidiabetic drugs against Alzheimer’s disease. Cell Biosci. 2022;12:28.CrossRefPubMedPubMedCentral
10.
go back to reference Li C, Qian H, Feng L, Li M. Causal Association between Type 2 diabetes Mellitus and Alzheimer’s Disease: a two-sample mendelian randomization study. J Alzheimers Dis Rep. 2024;8:945–57.CrossRefPubMedPubMedCentral Li C, Qian H, Feng L, Li M. Causal Association between Type 2 diabetes Mellitus and Alzheimer’s Disease: a two-sample mendelian randomization study. J Alzheimers Dis Rep. 2024;8:945–57.CrossRefPubMedPubMedCentral
11.
go back to reference Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: observational and mendelian randomisation studies in 1 million individuals. Epidemiol Psychiatr Sci. 2020;29:e118.CrossRefPubMedPubMedCentral Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: observational and mendelian randomisation studies in 1 million individuals. Epidemiol Psychiatr Sci. 2020;29:e118.CrossRefPubMedPubMedCentral
12.
go back to reference Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018;9:2941.CrossRefPubMedPubMedCentral Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018;9:2941.CrossRefPubMedPubMedCentral
13.
go back to reference Chiou J, Geusz RJ, Okino ML, Han JY, Miller M, Melton R, et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature. 2021;594:398–402.CrossRefPubMedPubMedCentral Chiou J, Geusz RJ, Okino ML, Han JY, Miller M, Melton R, et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature. 2021;594:398–402.CrossRefPubMedPubMedCentral
14.
go back to reference Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53:840–60.CrossRefPubMedPubMedCentral Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53:840–60.CrossRefPubMedPubMedCentral
15.
go back to reference Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–9.CrossRefPubMedPubMedCentral Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–9.CrossRefPubMedPubMedCentral
16.
go back to reference Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet. 2021;53:1097–103.CrossRefPubMed Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet. 2021;53:1097–103.CrossRefPubMed
18.
go back to reference Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53:1415–24.CrossRefPubMed Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53:1415–24.CrossRefPubMed
19.
go back to reference Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, et al. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat Genet. 2020;52:1314–32.CrossRefPubMedPubMedCentral Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, et al. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat Genet. 2020;52:1314–32.CrossRefPubMedPubMedCentral
20.
go back to reference Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53:1300–10.CrossRefPubMedPubMedCentral Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53:1300–10.CrossRefPubMedPubMedCentral
21.
go back to reference Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.CrossRefPubMedPubMedCentral Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.CrossRefPubMedPubMedCentral
23.
go back to reference Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.CrossRefPubMedPubMedCentral Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.CrossRefPubMedPubMedCentral
25.
go back to reference Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.CrossRefPubMedPubMedCentral Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.CrossRefPubMedPubMedCentral
26.
go back to reference Greco MFD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34:2926–40.CrossRef Greco MFD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34:2926–40.CrossRef
27.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.CrossRefPubMedPubMedCentral Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.CrossRefPubMedPubMedCentral
28.
go back to reference Zoorob RJ, Kihlberg CJ, Taylor SE. Aging and disease prevention. Clin Geriatr Med. 2011;27:523–39.CrossRefPubMed Zoorob RJ, Kihlberg CJ, Taylor SE. Aging and disease prevention. Clin Geriatr Med. 2011;27:523–39.CrossRefPubMed
29.
go back to reference Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 2021;9:117–26.CrossRefPubMed Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 2021;9:117–26.CrossRefPubMed
30.
go back to reference Codd V, Wang Q, Allara E, Musicha C, Kaptoge S, Stoma S, et al. Polygenic basis and biomedical consequences of telomere length variation. Nat Genet. 2021;53:1425–33.CrossRefPubMedPubMedCentral Codd V, Wang Q, Allara E, Musicha C, Kaptoge S, Stoma S, et al. Polygenic basis and biomedical consequences of telomere length variation. Nat Genet. 2021;53:1425–33.CrossRefPubMedPubMedCentral
31.
go back to reference Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.CrossRefPubMed Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.CrossRefPubMed
32.
go back to reference Lee SH, Park SY, Choi CS. Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metab J. 2022;46:15–37.CrossRefPubMed Lee SH, Park SY, Choi CS. Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metab J. 2022;46:15–37.CrossRefPubMed
33.
go back to reference Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19:758–66.CrossRefPubMedPubMedCentral Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19:758–66.CrossRefPubMedPubMedCentral
34.
go back to reference Dunk MM, Driscoll I, Alzheimer’s Disease Neuroimaging Initiative. Total cholesterol and APOE-Related risk for Alzheimer’s Disease in the Alzheimer’s Disease Neuroimaging Initiative. J Alzheimers Dis. 2022;85:1519–28.CrossRefPubMedPubMedCentral Dunk MM, Driscoll I, Alzheimer’s Disease Neuroimaging Initiative. Total cholesterol and APOE-Related risk for Alzheimer’s Disease in the Alzheimer’s Disease Neuroimaging Initiative. J Alzheimers Dis. 2022;85:1519–28.CrossRefPubMedPubMedCentral
35.
go back to reference Hall JR, Wiechmann AR, Johnson LA, Edwards M, Barber RC, Cunningham R, et al. Total cholesterol and neuropsychiatric symptoms in Alzheimer’s disease: the impact of total cholesterol level and gender. Dement Geriatr Cogn Disord. 2014;38:300–9.CrossRefPubMed Hall JR, Wiechmann AR, Johnson LA, Edwards M, Barber RC, Cunningham R, et al. Total cholesterol and neuropsychiatric symptoms in Alzheimer’s disease: the impact of total cholesterol level and gender. Dement Geriatr Cogn Disord. 2014;38:300–9.CrossRefPubMed
36.
go back to reference Van Dijk EJ, Breteler MM, Schmidt R, Berger K, Nilsson LG, Oudkerk M, et al. The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study. Hypertension. 2004;44:625–30.CrossRefPubMed Van Dijk EJ, Breteler MM, Schmidt R, Berger K, Nilsson LG, Oudkerk M, et al. The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study. Hypertension. 2004;44:625–30.CrossRefPubMed
37.
go back to reference Den Heijer T, Launer LJ, Prins ND, van Dijk EJ, Vermeer SE, Hofman A, et al. Association between blood pressure, white matter lesions, and atrophy of the medial temporal lobe. Neurology. 2005;64:263–7.CrossRef Den Heijer T, Launer LJ, Prins ND, van Dijk EJ, Vermeer SE, Hofman A, et al. Association between blood pressure, white matter lesions, and atrophy of the medial temporal lobe. Neurology. 2005;64:263–7.CrossRef
38.
go back to reference Bakker SL, de Leeuw FE, den Heijer T, Koudstaal PJ, Hofman A, Breteler MM. Cerebral haemodynamics in the elderly: the Rotterdam study. Neuroepidemiology. 2004;23:178–84.CrossRefPubMed Bakker SL, de Leeuw FE, den Heijer T, Koudstaal PJ, Hofman A, Breteler MM. Cerebral haemodynamics in the elderly: the Rotterdam study. Neuroepidemiology. 2004;23:178–84.CrossRefPubMed
39.
go back to reference Ruitenberg A, den Heijer T, Bakker SL, Swieten JC, Koudstaal PJ, Hofman A, et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol. 2005;57:789–94.CrossRefPubMed Ruitenberg A, den Heijer T, Bakker SL, Swieten JC, Koudstaal PJ, Hofman A, et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol. 2005;57:789–94.CrossRefPubMed
40.
go back to reference Yuan M, Chen SJ, Li XL, Xu LJ. Blood pressure and the risk of Alzheimer’s Disease: is there a link? Am J Alzheimers Dis Other Demen. 2016;31:97–8.CrossRefPubMed Yuan M, Chen SJ, Li XL, Xu LJ. Blood pressure and the risk of Alzheimer’s Disease: is there a link? Am J Alzheimers Dis Other Demen. 2016;31:97–8.CrossRefPubMed
Metadata
Title
Impact of diabetes mellitus on the risk of Alzheimer’s disease: a mendelian randomization study
Authors
Weichao Wang
Jie Zhang
Man Zhang
Chengyuan Zhang
Huanli Liu
Wanlin Li
Yimeng Fan
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2024
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-024-03955-y