Skip to main content
Top

Fueling neurodegeneration: metabolic insights into microglia functions

Unlock free access to practice-relevant journal articles

Join our community of medical professionals and register now to access a handpicked selection of journal articles from Springer's Medical portfolio. 

Looking for something specific?

Find articles from over 500 clinical journals from Springer with the search function.

About journals on Springer Medicine

The range of medical journals on Springer Medicine is extremely diverse. It includes the current editions and archives of around 500 English-language journals from almost all medical disciplines published by Springer. 

The specialist literature is usually available both online in full text and as a PDF for download. The online view is optimized in such a way that the specialist texts can be read comfortably on all screen sizes, from desktops to tablets to smartphones. We also include features to support your use of the journals for your research, such as bookmark setting.

Whether you’re interested in internal medicine, surgery, general medicine, gynecology, orthopedics, neurology, or pediatrics, there are excellent journals in almost every subject area, such as the BMC Series, Diabetologia, Breast Cancer Research, Current Obesity Reports, CNS Drugs and many others, all of which are an integral part of the everyday life of doctors across Europe. 

The breadth of content from this suite of journals allows the Springer Medicine team to collect and deliver broad-ranging content across the full spectrum of medical knowledge, with a special focus on topics highlighted by these leading journals and their editorial boards and specialist authors. This guarantees a high quality of content and ensures that our readers are offered the most relevant topics in their respective specialist area. 

Our experienced clinical content managers constantly monitor the needs of medical professionals to provide up-to-date reports from international congresses, expert interviews, and a range of digestible content on emerging topics in the field of medicine.

Published in:

Open Access 01-12-2024 | Alzheimer's Disease | Review

Fueling neurodegeneration: metabolic insights into microglia functions

Authors: Mohammadamin Sadeghdoust, Aysika Das, Deepak Kumar Kaushik

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Microglia, the resident immune cells of the central nervous system, emerge in the brain during early embryonic development and persist throughout life. They play essential roles in brain homeostasis, and their dysfunction contributes to neuroinflammation and the progression of neurodegenerative diseases. Recent studies have uncovered an intricate relationship between microglia functions and metabolic processes, offering fresh perspectives on disease mechanisms and possible treatments. Despite these advancements, there are still significant gaps in our understanding of how metabolic dysregulation affects microglial phenotypes in these disorders. This review aims to address these gaps, laying the groundwork for future research on the topic. We specifically examine how metabolic shifts in microglia, such as the transition from oxidative phosphorylation and mitochondrial metabolism to heightened glycolysis during proinflammatory states, impact the disease progression in Alzheimer’s disease, multiple sclerosis, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. Additionally, we explore the role of iron, fatty and amino acid metabolism in microglial homeostasis and repair. Identifying both distinct and shared metabolic adaptations in microglia across neurodegenerative diseases could reveal common therapeutic targets and provide a deeper understanding of disease-specific mechanisms underlying multiple CNS disorders.
Literature
1.
go back to reference Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu. 1-and Irf8-dependent pathways. Nat Neurosci. 2013;16(3):273–80.PubMedCrossRef Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu. 1-and Irf8-dependent pathways. Nat Neurosci. 2013;16(3):273–80.PubMedCrossRef
2.
go back to reference Perry V, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985;15(2):313–26.PubMedCrossRef Perry V, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985;15(2):313–26.PubMedCrossRef
3.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–8.PubMedCrossRef Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–8.PubMedCrossRef
4.
go back to reference Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45.PubMedCrossRef Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45.PubMedCrossRef
5.
go back to reference Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.PubMedCrossRef Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.PubMedCrossRef
6.
go back to reference Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang L-c, Means TK, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013;16(12):1896–905.PubMedPubMedCentralCrossRef Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang L-c, Means TK, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013;16(12):1896–905.PubMedPubMedCentralCrossRef
7.
go back to reference Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Reviews Neurol. 2010;6(4):193–201.CrossRef Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Reviews Neurol. 2010;6(4):193–201.CrossRef
8.
go back to reference Agrawal M. Molecular basis of chronic neurodegeneration. Clinical molecular medicine: Elsevier; 2020. pp. 447–60. Agrawal M. Molecular basis of chronic neurodegeneration. Clinical molecular medicine: Elsevier; 2020. pp. 447–60.
9.
go back to reference Erkkinen MG, Kim M-O, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118.PubMedPubMedCentralCrossRef Erkkinen MG, Kim M-O, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118.PubMedPubMedCentralCrossRef
10.
go back to reference Nichols E, Szoeke CE, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106.CrossRef Nichols E, Szoeke CE, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106.CrossRef
11.
go back to reference Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Reviews Neurol. 2019;15(10):565–81.CrossRef Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Reviews Neurol. 2019;15(10):565–81.CrossRef
12.
go back to reference Navarro V, Sanchez-Mejias E, Jimenez S, Muñoz-Castro C, Sanchez-Varo R, Davila JC, et al. Microglia in Alzheimer’s disease: activated, dysfunctional or degenerative. Front Aging Neurosci. 2018;10:357752.CrossRef Navarro V, Sanchez-Mejias E, Jimenez S, Muñoz-Castro C, Sanchez-Varo R, Davila JC, et al. Microglia in Alzheimer’s disease: activated, dysfunctional or degenerative. Front Aging Neurosci. 2018;10:357752.CrossRef
13.
go back to reference Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47(3):566–81. e9.PubMedPubMedCentralCrossRef Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47(3):566–81. e9.PubMedPubMedCentralCrossRef
14.
go back to reference Yong VW. Microglia in multiple sclerosis: protectors turn destroyers. Neuron. 2022;110(21):3534–48.PubMedCrossRef Yong VW. Microglia in multiple sclerosis: protectors turn destroyers. Neuron. 2022;110(21):3534–48.PubMedCrossRef
16.
go back to reference Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol. 2020;184:101719.PubMedCrossRef Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol. 2020;184:101719.PubMedCrossRef
17.
go back to reference Benarroch E. What is the role of Microglial metabolism in inflammation and neurodegeneration? Neurology. 2022;99(3):99–105.PubMedCrossRef Benarroch E. What is the role of Microglial metabolism in inflammation and neurodegeneration? Neurology. 2022;99(3):99–105.PubMedCrossRef
18.
go back to reference Kaushik DK, Yong VW. Metabolic needs of brain-infiltrating leukocytes and microglia in multiple sclerosis. J Neurochem. 2021;158(1):14–24.PubMedCrossRef Kaushik DK, Yong VW. Metabolic needs of brain-infiltrating leukocytes and microglia in multiple sclerosis. J Neurochem. 2021;158(1):14–24.PubMedCrossRef
19.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.PubMedCrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.PubMedCrossRef
20.
go back to reference Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.PubMedCrossRef Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.PubMedCrossRef
21.
go back to reference Lai AY, McLaurin J. Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where. Future Neurol. 2012;7(2):165–76.PubMedPubMedCentralCrossRef Lai AY, McLaurin J. Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where. Future Neurol. 2012;7(2):165–76.PubMedPubMedCentralCrossRef
22.
go back to reference Pereira JB, Janelidze S, Strandberg O, Whelan CD, Zetterberg H, Blennow K, et al. Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer’s disease pathology. Nat Aging. 2022;2(12):1138–44.PubMedPubMedCentralCrossRef Pereira JB, Janelidze S, Strandberg O, Whelan CD, Zetterberg H, Blennow K, et al. Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer’s disease pathology. Nat Aging. 2022;2(12):1138–44.PubMedPubMedCentralCrossRef
23.
go back to reference Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6(1):6176.PubMedCrossRef Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6(1):6176.PubMedCrossRef
24.
go back to reference Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784):669–73.PubMedPubMedCentralCrossRef Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784):669–73.PubMedPubMedCentralCrossRef
25.
go back to reference Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.PubMedCrossRef Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.PubMedCrossRef
26.
go back to reference Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018;10(465):eaah4066.PubMedPubMedCentralCrossRef Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018;10(465):eaah4066.PubMedPubMedCentralCrossRef
27.
go back to reference Cheng J, Zhang R, Xu Z, Ke Y, Sun R, Yang H, et al. Early glycolytic reprogramming controls microglial inflammatory activation. J Neuroinflamm. 2021;18(1):129.CrossRef Cheng J, Zhang R, Xu Z, Ke Y, Sun R, Yang H, et al. Early glycolytic reprogramming controls microglial inflammatory activation. J Neuroinflamm. 2021;18(1):129.CrossRef
28.
go back to reference Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.PubMedPubMedCentralCrossRef Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.PubMedPubMedCentralCrossRef
29.
go back to reference Payne J, Maher F, Simpson I, Mattice L, Davies P. Glucose transporter glut 5 expression in microglial cells. Glia. 1997;21(3):327–31.PubMedCrossRef Payne J, Maher F, Simpson I, Mattice L, Davies P. Glucose transporter glut 5 expression in microglial cells. Glia. 1997;21(3):327–31.PubMedCrossRef
30.
go back to reference Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegeneration. 2019;14:1–15.CrossRef Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegeneration. 2019;14:1–15.CrossRef
32.
go back to reference Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegeneration. 2019;14(1):1–15.CrossRef Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegeneration. 2019;14(1):1–15.CrossRef
33.
go back to reference Kalsbeek MJ, Mulder L, Yi C-X. Microglia energy metabolism in metabolic disorder. Mol Cell Endocrinol. 2016;438:27–35.PubMedCrossRef Kalsbeek MJ, Mulder L, Yi C-X. Microglia energy metabolism in metabolic disorder. Mol Cell Endocrinol. 2016;438:27–35.PubMedCrossRef
34.
go back to reference Biswas J, Gupta S, Verma DK, Gupta P, Singh A, Tiwari S, et al. Involvement of glucose related energy crisis and endoplasmic reticulum stress: insinuation of streptozotocin induced Alzheimer’s like pathology. Cell Signal. 2018;42:211–26.PubMedCrossRef Biswas J, Gupta S, Verma DK, Gupta P, Singh A, Tiwari S, et al. Involvement of glucose related energy crisis and endoplasmic reticulum stress: insinuation of streptozotocin induced Alzheimer’s like pathology. Cell Signal. 2018;42:211–26.PubMedCrossRef
35.
go back to reference Harr SD, Simonian NA, Hyman BT. Functional alterations in Alzheimer’s disease: decreased glucose transporter 3 immunoreactivity in the perforant pathway terminal zone. J Neuropathology Experimental Neurol. 1995;54(1):38–41.CrossRef Harr SD, Simonian NA, Hyman BT. Functional alterations in Alzheimer’s disease: decreased glucose transporter 3 immunoreactivity in the perforant pathway terminal zone. J Neuropathology Experimental Neurol. 1995;54(1):38–41.CrossRef
36.
go back to reference Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Annals Neurology: Official J Am Neurol Association Child Neurol Soc. 1994;35(5):546–51.CrossRef Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Annals Neurology: Official J Am Neurol Association Child Neurol Soc. 1994;35(5):546–51.CrossRef
37.
go back to reference Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, et al. Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study. J Nucl Med. 2016;57(6):954–60.PubMedCrossRef Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, et al. Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study. J Nucl Med. 2016;57(6):954–60.PubMedCrossRef
38.
go back to reference Johnson EC, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020;26(5):769–80.PubMedPubMedCentralCrossRef Johnson EC, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020;26(5):769–80.PubMedPubMedCentralCrossRef
39.
go back to reference Backes H, Walberer M, Ladwig A, Rueger MA, Neumaier B, Endepols H, et al. Glucose consumption of inflammatory cells masks metabolic deficits in the brain. NeuroImage. 2016;128:54–62.PubMedCrossRef Backes H, Walberer M, Ladwig A, Rueger MA, Neumaier B, Endepols H, et al. Glucose consumption of inflammatory cells masks metabolic deficits in the brain. NeuroImage. 2016;128:54–62.PubMedCrossRef
40.
go back to reference Warburg O. The metabolism of carcinoma cells. J Cancer Res. 1925;9(1):148–63.CrossRef Warburg O. The metabolism of carcinoma cells. J Cancer Res. 1925;9(1):148–63.CrossRef
41.
go back to reference Schuster S, Boley D, Möller P, Stark H, Kaleta C. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production. Biochem Soc Trans. 2015;43(6):1187–94.PubMedCrossRef Schuster S, Boley D, Möller P, Stark H, Kaleta C. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production. Biochem Soc Trans. 2015;43(6):1187–94.PubMedCrossRef
43.
go back to reference Liang X, Wang Z, Dai Z, Zhang H, Zhang J, Luo P, et al. Glioblastoma glycolytic signature predicts unfavorable prognosis, immunological heterogeneity, and ENO1 promotes microglia M2 polarization and cancer cell malignancy. Cancer Gene Ther. 2023;30(3):481–96.PubMed Liang X, Wang Z, Dai Z, Zhang H, Zhang J, Luo P, et al. Glioblastoma glycolytic signature predicts unfavorable prognosis, immunological heterogeneity, and ENO1 promotes microglia M2 polarization and cancer cell malignancy. Cancer Gene Ther. 2023;30(3):481–96.PubMed
44.
go back to reference Bernier L-P, York EM, MacVicar BA. Immunometabolism in the brain: how metabolism shapes microglial function. Trends Neurosci. 2020;43(11):854–69.PubMedCrossRef Bernier L-P, York EM, MacVicar BA. Immunometabolism in the brain: how metabolism shapes microglial function. Trends Neurosci. 2020;43(11):854–69.PubMedCrossRef
45.
go back to reference Baik SH, Kang S, Lee W, Choi H, Chung S, Kim J-I, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metabol. 2019;30(3):493–507. e6.CrossRef Baik SH, Kang S, Lee W, Choi H, Chung S, Kim J-I, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metabol. 2019;30(3):493–507. e6.CrossRef
46.
go back to reference Zhao Y, Xu H. Microglial lactate metabolism as a potential therapeutic target for Alzheimer’s disease. Mol Neurodegeneration. 2022;17(1):1–3.CrossRef Zhao Y, Xu H. Microglial lactate metabolism as a potential therapeutic target for Alzheimer’s disease. Mol Neurodegeneration. 2022;17(1):1–3.CrossRef
47.
go back to reference Andersson AK, Rönnbäck L, Hansson E. Lactate induces tumour necrosis factor-α, interleukin‐6 and interleukin‐1β release in microglial‐and astroglial‐enriched primary cultures. J Neurochem. 2005;93(5):1327–33.PubMedCrossRef Andersson AK, Rönnbäck L, Hansson E. Lactate induces tumour necrosis factor-α, interleukin‐6 and interleukin‐1β release in microglial‐and astroglial‐enriched primary cultures. J Neurochem. 2005;93(5):1327–33.PubMedCrossRef
48.
go back to reference Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80.PubMedPubMedCentralCrossRef Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80.PubMedPubMedCentralCrossRef
49.
go back to reference Pan R-Y, He L, Zhang J, Liu X, Liao Y, Gao J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metabol. 2022;34(4):634–48. e6.CrossRef Pan R-Y, He L, Zhang J, Liu X, Liao Y, Gao J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metabol. 2022;34(4):634–48. e6.CrossRef
50.
go back to reference Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, et al. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem. 2009;109(4):1144–56.PubMedPubMedCentralCrossRef Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, et al. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem. 2009;109(4):1144–56.PubMedPubMedCentralCrossRef
51.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90. e17.PubMedCrossRef Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90. e17.PubMedCrossRef
52.
go back to reference Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018;173(5):1073–81.PubMedCrossRef Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018;173(5):1073–81.PubMedCrossRef
53.
go back to reference Xing J, Titus AR, Beth Humphrey M. The TREM2-DAP12 signaling pathway in Nasu–Hakola disease: a molecular genetics perspective. Res Rep Biochem. 2015:89–100. Xing J, Titus AR, Beth Humphrey M. The TREM2-DAP12 signaling pathway in Nasu–Hakola disease: a molecular genetics perspective. Res Rep Biochem. 2015:89–100.
54.
go back to reference Kleinberger G, Brendel M, Mracsko E, Wefers B, Groeneweg L, Xiang X, et al. The FTD-like syndrome causing TREM 2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J. 2017;36(13):1837–53.PubMedPubMedCentralCrossRef Kleinberger G, Brendel M, Mracsko E, Wefers B, Groeneweg L, Xiang X, et al. The FTD-like syndrome causing TREM 2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J. 2017;36(13):1837–53.PubMedPubMedCentralCrossRef
55.
go back to reference Ulland TK, Song WM, Huang SC-C, Ulrich JD, Sergushichev A, Beatty WL, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170(4):649–63. e13.PubMedPubMedCentralCrossRef Ulland TK, Song WM, Huang SC-C, Ulrich JD, Sergushichev A, Beatty WL, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170(4):649–63. e13.PubMedPubMedCentralCrossRef
58.
go back to reference Loving BA, Bruce KD. Lipid and lipoprotein metabolism in microglia. Front Physiol. 2020;11:526534.CrossRef Loving BA, Bruce KD. Lipid and lipoprotein metabolism in microglia. Front Physiol. 2020;11:526534.CrossRef
59.
go back to reference Chausse B, Kakimoto PA, Kann O, editors. Microglia and lipids: how metabolism controls brain innate immunity. Seminars in cell & developmental biology. Elsevier; 2021. Chausse B, Kakimoto PA, Kann O, editors. Microglia and lipids: how metabolism controls brain innate immunity. Seminars in cell & developmental biology. Elsevier; 2021.
60.
go back to reference Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, et al. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease. Nat Commun. 2021;12(1):3416.PubMedPubMedCentralCrossRef Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, et al. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease. Nat Commun. 2021;12(1):3416.PubMedPubMedCentralCrossRef
61.
go back to reference Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small G, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.PubMedCrossRef Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small G, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.PubMedCrossRef
62.
go back to reference Kelly B, Pearce EL. Amino assets: how amino acids support immunity. Cell Metabol. 2020;32(2):154–75.CrossRef Kelly B, Pearce EL. Amino assets: how amino acids support immunity. Cell Metabol. 2020;32(2):154–75.CrossRef
63.
64.
go back to reference Vazquez-Valls E, Flores-Soto M, Chaparro-Huerta V, Torres-Mendoza B, Gudiño-Cabrera G, Rivera-Cervantes M, et al. HIF-1α expression in the hippocampus and peripheral macrophages after glutamate-induced excitotoxicity. J Neuroimmunol. 2011;238(1–2):12–8.PubMedCrossRef Vazquez-Valls E, Flores-Soto M, Chaparro-Huerta V, Torres-Mendoza B, Gudiño-Cabrera G, Rivera-Cervantes M, et al. HIF-1α expression in the hippocampus and peripheral macrophages after glutamate-induced excitotoxicity. J Neuroimmunol. 2011;238(1–2):12–8.PubMedCrossRef
65.
go back to reference Tannahill G, Curtis A, Adamik J, Palsson-McDermott E, McGettrick A, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–42.PubMedPubMedCentralCrossRef Tannahill G, Curtis A, Adamik J, Palsson-McDermott E, McGettrick A, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–42.PubMedPubMedCentralCrossRef
66.
go back to reference Lukyanova L, Kirova YI, Germanova E. The role of succinate in regulation of immediate HIF-1α expression in hypoxia. Bull Exp Biol Med. 2018;164:298–303.PubMedCrossRef Lukyanova L, Kirova YI, Germanova E. The role of succinate in regulation of immediate HIF-1α expression in hypoxia. Bull Exp Biol Med. 2018;164:298–303.PubMedCrossRef
67.
go back to reference Gao G, Zhao S, Xia X, Li C, Li C, Ji C, et al. Glutaminase C regulates microglial activation and pro-inflammatory exosome release: relevance to the pathogenesis of Alzheimer’s disease. Front Cell Neurosci. 2019;13:264.PubMedPubMedCentralCrossRef Gao G, Zhao S, Xia X, Li C, Li C, Ji C, et al. Glutaminase C regulates microglial activation and pro-inflammatory exosome release: relevance to the pathogenesis of Alzheimer’s disease. Front Cell Neurosci. 2019;13:264.PubMedPubMedCentralCrossRef
68.
go back to reference Gao G, Li C, Zhu J, Wang Y, Huang Y, Zhao S, et al. Glutaminase 1 regulates neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front Immunol. 2020;11:161.PubMedPubMedCentralCrossRef Gao G, Li C, Zhu J, Wang Y, Huang Y, Zhao S, et al. Glutaminase 1 regulates neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front Immunol. 2020;11:161.PubMedPubMedCentralCrossRef
69.
go back to reference Kono M, Yoshida N, Maeda K, Suárez-Fueyo A, Kyttaris VC, Tsokos GC. Glutaminase 1 inhibition reduces glycolysis and ameliorates lupus‐like disease in MRL/lpr mice and experimental autoimmune encephalomyelitis. Arthritis Rheumatol. 2019;71(11):1869–78.PubMedPubMedCentralCrossRef Kono M, Yoshida N, Maeda K, Suárez-Fueyo A, Kyttaris VC, Tsokos GC. Glutaminase 1 inhibition reduces glycolysis and ameliorates lupus‐like disease in MRL/lpr mice and experimental autoimmune encephalomyelitis. Arthritis Rheumatol. 2019;71(11):1869–78.PubMedPubMedCentralCrossRef
70.
go back to reference Nakajima K, Kanamatsu T, Takezawa Y, Kohsaka S. Up-regulation of glutamine synthesis in microglia activated with endotoxin. Neurosci Lett. 2015;591:99–104.PubMedCrossRef Nakajima K, Kanamatsu T, Takezawa Y, Kohsaka S. Up-regulation of glutamine synthesis in microglia activated with endotoxin. Neurosci Lett. 2015;591:99–104.PubMedCrossRef
72.
go back to reference Maddison DC, Giorgini F, editors. The kynurenine pathway and neurodegenerative disease. Seminars in cell & developmental biology. Elsevier; 2015. Maddison DC, Giorgini F, editors. The kynurenine pathway and neurodegenerative disease. Seminars in cell & developmental biology. Elsevier; 2015.
73.
go back to reference Pallotta MT, Rossini S, Suvieri C, Coletti A, Orabona C, Macchiarulo A, et al. Indoleamine 2, 3-dioxygenase 1 (IDO1): an up‐to‐date overview of an eclectic immunoregulatory enzyme. FEBS J. 2022;289(20):6099–118.PubMedCrossRef Pallotta MT, Rossini S, Suvieri C, Coletti A, Orabona C, Macchiarulo A, et al. Indoleamine 2, 3-dioxygenase 1 (IDO1): an up‐to‐date overview of an eclectic immunoregulatory enzyme. FEBS J. 2022;289(20):6099–118.PubMedCrossRef
74.
go back to reference Feng W, Wang Y, Liu Z-Q, Zhang X, Han R, Miao Y-Z, et al. Microglia activation contributes to quinolinic acid-induced neuronal excitotoxicity through TNF-α. Apoptosis. 2017;22:696–709.PubMedCrossRef Feng W, Wang Y, Liu Z-Q, Zhang X, Han R, Miao Y-Z, et al. Microglia activation contributes to quinolinic acid-induced neuronal excitotoxicity through TNF-α. Apoptosis. 2017;22:696–709.PubMedCrossRef
75.
go back to reference Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ. The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS ONE. 2009;4(7):e6344.PubMedPubMedCentralCrossRef Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ. The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS ONE. 2009;4(7):e6344.PubMedPubMedCentralCrossRef
76.
go back to reference Alachkar A, Agrawal S, Baboldashtian M, Nuseir K, Salazar J, Agrawal A. L-methionine enhances neuroinflammation and impairs neurogenesis: implication for Alzheimer’s disease. J Neuroimmunol. 2022;366:577843.PubMedCrossRef Alachkar A, Agrawal S, Baboldashtian M, Nuseir K, Salazar J, Agrawal A. L-methionine enhances neuroinflammation and impairs neurogenesis: implication for Alzheimer’s disease. J Neuroimmunol. 2022;366:577843.PubMedCrossRef
77.
go back to reference Zhao Y, Dong X, Chen B, Zhang Y, Meng S, Guo F, et al. Blood levels of circulating methionine components in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci. 2022;14:934070.PubMedPubMedCentralCrossRef Zhao Y, Dong X, Chen B, Zhang Y, Meng S, Guo F, et al. Blood levels of circulating methionine components in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci. 2022;14:934070.PubMedPubMedCentralCrossRef
78.
go back to reference Miller AL. The methionine-homocysteine cycle and its effects on cognitive diseases.(Homocysteine & Cognitive). Altern Med Rev. 2003;8(1):7–20.PubMed Miller AL. The methionine-homocysteine cycle and its effects on cognitive diseases.(Homocysteine & Cognitive). Altern Med Rev. 2003;8(1):7–20.PubMed
79.
go back to reference Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol. 2014;5:532.PubMedPubMedCentralCrossRef Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol. 2014;5:532.PubMedPubMedCentralCrossRef
80.
go back to reference Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: a multifaceted enzyme important in health and disease. Physiol Rev. 2018;98(2):641–65.PubMedPubMedCentralCrossRef Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: a multifaceted enzyme important in health and disease. Physiol Rev. 2018;98(2):641–65.PubMedPubMedCentralCrossRef
81.
go back to reference Kan MJ, Lee JE, Wilson JG, Everhart AL, Brown CM, Hoofnagle AN, et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. J Neurosci. 2015;35(15):5969–82.PubMedPubMedCentralCrossRef Kan MJ, Lee JE, Wilson JG, Everhart AL, Brown CM, Hoofnagle AN, et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. J Neurosci. 2015;35(15):5969–82.PubMedPubMedCentralCrossRef
82.
go back to reference Ma C, Hunt JB, Kovalenko A, Liang H, Selenica M-LB, Orr MB, et al. Myeloid arginase 1 insufficiency exacerbates amyloid-β associated neurodegenerative pathways and glial signatures in a mouse model of Alzheimer’s disease: a targeted transcriptome analysis. Front Immunol. 2021;12:628156.PubMedPubMedCentralCrossRef Ma C, Hunt JB, Kovalenko A, Liang H, Selenica M-LB, Orr MB, et al. Myeloid arginase 1 insufficiency exacerbates amyloid-β associated neurodegenerative pathways and glial signatures in a mouse model of Alzheimer’s disease: a targeted transcriptome analysis. Front Immunol. 2021;12:628156.PubMedPubMedCentralCrossRef
83.
go back to reference Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, et al. Inflammation alters the expression of DMT 1, FPN 1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126(4):541–9.PubMedCrossRef Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, et al. Inflammation alters the expression of DMT 1, FPN 1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126(4):541–9.PubMedCrossRef
84.
go back to reference Bishop GM, Dang TN, Dringen R, Robinson SR. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox Res. 2011;19:443–51.PubMedCrossRef Bishop GM, Dang TN, Dringen R, Robinson SR. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox Res. 2011;19:443–51.PubMedCrossRef
85.
go back to reference Song N, Wang J, Jiang H, Xie J. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson’s disease. Biochim et Biophys Acta (BBA)-Molecular Basis Disease. 2018;1864(3):967–73.CrossRef Song N, Wang J, Jiang H, Xie J. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson’s disease. Biochim et Biophys Acta (BBA)-Molecular Basis Disease. 2018;1864(3):967–73.CrossRef
86.
go back to reference Zeineh MM, Chen Y, Kitzler HH, Hammond R, Vogel H, Rutt BK. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging. 2015;36(9):2483–500.PubMedPubMedCentralCrossRef Zeineh MM, Chen Y, Kitzler HH, Hammond R, Vogel H, Rutt BK. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging. 2015;36(9):2483–500.PubMedPubMedCentralCrossRef
87.
go back to reference van Duijn S, Bulk M, van Duinen SG, Nabuurs RJ, van Buchem MA, van der Weerd L, et al. Cortical iron reflects severity of Alzheimer’s disease. J Alzheimers Dis. 2017;60(4):1533–45.PubMedPubMedCentralCrossRef van Duijn S, Bulk M, van Duinen SG, Nabuurs RJ, van Buchem MA, van der Weerd L, et al. Cortical iron reflects severity of Alzheimer’s disease. J Alzheimers Dis. 2017;60(4):1533–45.PubMedPubMedCentralCrossRef
88.
go back to reference Holland R, McIntosh A, Finucane O, Mela V, Rubio-Araiz A, Timmons G, et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav Immun. 2018;68:183–96.PubMedCrossRef Holland R, McIntosh A, Finucane O, Mela V, Rubio-Araiz A, Timmons G, et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav Immun. 2018;68:183–96.PubMedCrossRef
89.
go back to reference McIntosh A, Mela V, Harty C, Minogue AM, Costello DA, Kerskens C, et al. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol. 2019;29(5):606–21.PubMedPubMedCentralCrossRef McIntosh A, Mela V, Harty C, Minogue AM, Costello DA, Kerskens C, et al. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol. 2019;29(5):606–21.PubMedPubMedCentralCrossRef
90.
go back to reference The Multiple Sclerosis International Federation, Atlas of MS, 3rd Edition. (September 2020). The Multiple Sclerosis International Federation, Atlas of MS, 3rd Edition. (September 2020).
91.
go back to reference Tortorella C, Bellacosa A, Paolicelli D, Fuiani A, Di Monte E, Simone IL, et al. Age-related gadolinium-enhancement of MRI brain lesions in multiple sclerosis. J Neurol Sci. 2005;239(1):95–9.PubMedCrossRef Tortorella C, Bellacosa A, Paolicelli D, Fuiani A, Di Monte E, Simone IL, et al. Age-related gadolinium-enhancement of MRI brain lesions in multiple sclerosis. J Neurol Sci. 2005;239(1):95–9.PubMedCrossRef
92.
go back to reference Giovannoni G, Silver N, Good C, Miller D, Thompson E. Immunological time-course of gadolinium-enhancing MRI lesions in patients with multiple sclerosis. Eur Neurol. 2000;44(4):222–8.PubMedCrossRef Giovannoni G, Silver N, Good C, Miller D, Thompson E. Immunological time-course of gadolinium-enhancing MRI lesions in patients with multiple sclerosis. Eur Neurol. 2000;44(4):222–8.PubMedCrossRef
93.
go back to reference Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmarch HA, et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Annals Neurology: Official J Am Neurol Association Child Neurol Soc. 1995;38(5):788–96.CrossRef Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmarch HA, et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Annals Neurology: Official J Am Neurol Association Child Neurol Soc. 1995;38(5):788–96.CrossRef
94.
go back to reference Guerrier T, Labalette M, Launay D, Lee-Chang C, Outteryck O, Lefèvre G, et al. Proinflammatory B-cell profile in the early phases of MS predicts an active disease. Neurology: Neuroimmunol Neuroinflammation. 2017;5(2):e431. Guerrier T, Labalette M, Launay D, Lee-Chang C, Outteryck O, Lefèvre G, et al. Proinflammatory B-cell profile in the early phases of MS predicts an active disease. Neurology: Neuroimmunol Neuroinflammation. 2017;5(2):e431.
95.
go back to reference Murphy ÁC, Lalor SJ, Lynch MA, Mills KH. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun. 2010;24(4):641–51.PubMedCrossRef Murphy ÁC, Lalor SJ, Lynch MA, Mills KH. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun. 2010;24(4):641–51.PubMedCrossRef
96.
go back to reference Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8 + T lymphocytes and B cells. Brain. 2018;141(7):2066–82.PubMedPubMedCentralCrossRef Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8 + T lymphocytes and B cells. Brain. 2018;141(7):2066–82.PubMedPubMedCentralCrossRef
97.
go back to reference Lassmann H. Multiple sclerosis pathology. Cold Spring Harbor Perspect Med. 2018;8(3):a028936.CrossRef Lassmann H. Multiple sclerosis pathology. Cold Spring Harbor Perspect Med. 2018;8(3):a028936.CrossRef
98.
go back to reference Prineas JW, Parratt JD. Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol. 2012;72(1):18–31.PubMedCrossRef Prineas JW, Parratt JD. Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol. 2012;72(1):18–31.PubMedCrossRef
99.
go back to reference Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80(5):695–705.PubMedPubMedCentralCrossRef Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80(5):695–705.PubMedPubMedCentralCrossRef
100.
go back to reference Maghzi A-H, Borazanci A, McGee J, Alexander JS, Gonzalez-Toledo E, Minagar A. Multiple sclerosis: pathophysiology, clinical features, diagnosis, and management. Neuroinflammation: Elsevier; 2011. pp. 1–23. Maghzi A-H, Borazanci A, McGee J, Alexander JS, Gonzalez-Toledo E, Minagar A. Multiple sclerosis: pathophysiology, clinical features, diagnosis, and management. Neuroinflammation: Elsevier; 2011. pp. 1–23.
102.
go back to reference Berglund R, Guerreiro-Cacais AO, Adzemovic MZ, Zeitelhofer M, Lund H, Ewing E, et al. Microglial autophagy–associated phagocytosis is essential for recovery from neuroinflammation. Sci Immunol. 2020;5(52):eabb5077.PubMedCrossRef Berglund R, Guerreiro-Cacais AO, Adzemovic MZ, Zeitelhofer M, Lund H, Ewing E, et al. Microglial autophagy–associated phagocytosis is essential for recovery from neuroinflammation. Sci Immunol. 2020;5(52):eabb5077.PubMedCrossRef
103.
go back to reference Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, et al. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 2008;28(46):12039–51.PubMedPubMedCentralCrossRef Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, et al. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 2008;28(46):12039–51.PubMedPubMedCentralCrossRef
104.
go back to reference Correale J. The role of microglial activation in disease progression. Multiple Scler J. 2014;20(10):1288–95.CrossRef Correale J. The role of microglial activation in disease progression. Multiple Scler J. 2014;20(10):1288–95.CrossRef
105.
go back to reference Broadwater L, Pandit A, Clements R, Azzam S, Vadnal J, Sulak M, et al. Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim et Biophys Acta (BBA)-Molecular Basis Disease. 2011;1812(5):630–41.CrossRef Broadwater L, Pandit A, Clements R, Azzam S, Vadnal J, Sulak M, et al. Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim et Biophys Acta (BBA)-Molecular Basis Disease. 2011;1812(5):630–41.CrossRef
106.
go back to reference Talla V, Koilkonda R, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, et al. Complex I subunit gene therapy with NDUFA6 ameliorates neurodegeneration in EAE. Investig Ophthalmol Vis Sci. 2015;56(2):1129–40.CrossRef Talla V, Koilkonda R, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, et al. Complex I subunit gene therapy with NDUFA6 ameliorates neurodegeneration in EAE. Investig Ophthalmol Vis Sci. 2015;56(2):1129–40.CrossRef
107.
go back to reference Regenold WT, Phatak P, Makley MJ, Stone RD, Kling MA. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci. 2008;275(1–2):106–12.PubMedPubMedCentralCrossRef Regenold WT, Phatak P, Makley MJ, Stone RD, Kling MA. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci. 2008;275(1–2):106–12.PubMedPubMedCentralCrossRef
108.
go back to reference Nijland PG, Molenaar RJ, van der Pol SM, van der Valk P, van Noorden CJ, de Vries HE, et al. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol Commun. 2015;3:1–13.CrossRef Nijland PG, Molenaar RJ, van der Pol SM, van der Valk P, van Noorden CJ, de Vries HE, et al. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol Commun. 2015;3:1–13.CrossRef
109.
go back to reference Keytsman C, Eijnde BO, Hansen D, Verboven K, Wens I. Elevated cardiovascular risk factors in multiple sclerosis. Multiple Scler Relat Disorders. 2017;17:220–3.CrossRef Keytsman C, Eijnde BO, Hansen D, Verboven K, Wens I. Elevated cardiovascular risk factors in multiple sclerosis. Multiple Scler Relat Disorders. 2017;17:220–3.CrossRef
110.
go back to reference Kolln J, Ren H-M, Da R-R, Zhang Y, Spillner E, Olek M, et al. Triosephosphate isomerase-and glyceraldehyde-3-phosphate dehydrogenase-reactive autoantibodies in the cerebrospinal fluid of patients with multiple sclerosis. J Immunol. 2006;177(8):5652–8.PubMedCrossRef Kolln J, Ren H-M, Da R-R, Zhang Y, Spillner E, Olek M, et al. Triosephosphate isomerase-and glyceraldehyde-3-phosphate dehydrogenase-reactive autoantibodies in the cerebrospinal fluid of patients with multiple sclerosis. J Immunol. 2006;177(8):5652–8.PubMedCrossRef
111.
go back to reference Royds JA, Timperley WR, Taylor CB. Levels of enolase and other enzymes in the cerebrospinal fluid as indices of pathological change. J Neurol Neurosurg Psychiatry. 1981;44(12):1129–35.PubMedPubMedCentralCrossRef Royds JA, Timperley WR, Taylor CB. Levels of enolase and other enzymes in the cerebrospinal fluid as indices of pathological change. J Neurol Neurosurg Psychiatry. 1981;44(12):1129–35.PubMedPubMedCentralCrossRef
112.
go back to reference Nijland PG, Michailidou I, Witte ME, Mizee MR, van der Pol SM, van Het Hof B, et al. Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia. 2014;62(7):1125–41.PubMedCrossRef Nijland PG, Michailidou I, Witte ME, Mizee MR, van der Pol SM, van Het Hof B, et al. Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia. 2014;62(7):1125–41.PubMedCrossRef
113.
go back to reference Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34.PubMedCrossRef Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34.PubMedCrossRef
114.
go back to reference Kaushik DK, Bhattacharya A, Mirzaei R, Rawji KS, Ahn Y, Rho JM, et al. Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. J Clin Investig. 2019;129(8):3277–92.PubMedPubMedCentralCrossRef Kaushik DK, Bhattacharya A, Mirzaei R, Rawji KS, Ahn Y, Rho JM, et al. Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. J Clin Investig. 2019;129(8):3277–92.PubMedPubMedCentralCrossRef
115.
go back to reference Gimeno-Bayón J, López‐López A, Rodríguez M, Mahy N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J Neurosci Res. 2014;92(6):723–31.PubMedCrossRef Gimeno-Bayón J, López‐López A, Rodríguez M, Mahy N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J Neurosci Res. 2014;92(6):723–31.PubMedCrossRef
116.
go back to reference Bernier L-P, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun. 2020;11(1):1559.PubMedPubMedCentralCrossRef Bernier L-P, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun. 2020;11(1):1559.PubMedPubMedCentralCrossRef
117.
go back to reference Li Y, Lu B, Sheng L, Zhu Z, Sun H, Zhou Y, et al. Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J Neurochem. 2018;144(2):186–200.PubMedCrossRef Li Y, Lu B, Sheng L, Zhu Z, Sun H, Zhou Y, et al. Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J Neurochem. 2018;144(2):186–200.PubMedCrossRef
118.
go back to reference Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30.PubMedCrossRef Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30.PubMedCrossRef
119.
go back to reference Testa G, Staurenghi E, Zerbinati C, Gargiulo S, Iuliano L, Giaccone G, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: their involvement in neuroinflammation. Redox Biol. 2016;10:24–33.PubMedPubMedCentralCrossRef Testa G, Staurenghi E, Zerbinati C, Gargiulo S, Iuliano L, Giaccone G, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: their involvement in neuroinflammation. Redox Biol. 2016;10:24–33.PubMedPubMedCentralCrossRef
121.
go back to reference McComb M, Browne RW, Bhattacharya S, Bodziak ML, Jakimovski D, Weinstock-Guttman B, et al. The cholesterol autoxidation products, 7-ketocholesterol and 7β-hydroxycholesterol are associated with serum neurofilaments in multiple sclerosis. Multiple Scler Relat Disorders. 2021;50:102864.CrossRef McComb M, Browne RW, Bhattacharya S, Bodziak ML, Jakimovski D, Weinstock-Guttman B, et al. The cholesterol autoxidation products, 7-ketocholesterol and 7β-hydroxycholesterol are associated with serum neurofilaments in multiple sclerosis. Multiple Scler Relat Disorders. 2021;50:102864.CrossRef
122.
go back to reference Diestel A, Aktas O, Hackel D, Häke I, Meier S, Raine CS, et al. Activation of microglial poly (ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J Exp Med. 2003;198(11):1729–40.PubMedPubMedCentralCrossRef Diestel A, Aktas O, Hackel D, Häke I, Meier S, Raine CS, et al. Activation of microglial poly (ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J Exp Med. 2003;198(11):1729–40.PubMedPubMedCentralCrossRef
123.
go back to reference Kauppinen TM, Swanson RA. Poly (ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol. 2005;174(4):2288–96.PubMedCrossRef Kauppinen TM, Swanson RA. Poly (ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol. 2005;174(4):2288–96.PubMedCrossRef
124.
go back to reference Bjørnevik K, Chitnis T, Ascherio A, Munger KL. Polyunsaturated fatty acids and the risk of multiple sclerosis. Multiple Scler J. 2017;23(14):1830–8.CrossRef Bjørnevik K, Chitnis T, Ascherio A, Munger KL. Polyunsaturated fatty acids and the risk of multiple sclerosis. Multiple Scler J. 2017;23(14):1830–8.CrossRef
125.
go back to reference Hopperton KE, Trépanier M-O, Giuliano V, Bazinet RP. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1–40 in mice. J Neuroinflamm. 2016;13(1):1–18.CrossRef Hopperton KE, Trépanier M-O, Giuliano V, Bazinet RP. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1–40 in mice. J Neuroinflamm. 2016;13(1):1–18.CrossRef
126.
go back to reference Sun W, Wang Q, Zhang R, Zhang N. Ketogenic diet attenuates neuroinflammation and induces conversion of M1 microglia to M2 in an EAE model of multiple sclerosis by regulating the NF-κB/NLRP3 pathway and inhibiting HDAC3 and P2X7R activation. Food Funct. 2023;14(15):7247–69.PubMedCrossRef Sun W, Wang Q, Zhang R, Zhang N. Ketogenic diet attenuates neuroinflammation and induces conversion of M1 microglia to M2 in an EAE model of multiple sclerosis by regulating the NF-κB/NLRP3 pathway and inhibiting HDAC3 and P2X7R activation. Food Funct. 2023;14(15):7247–69.PubMedCrossRef
127.
go back to reference Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, et al. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain. 2008;131(11):3081–91.PubMedPubMedCentralCrossRef Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, et al. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain. 2008;131(11):3081–91.PubMedPubMedCentralCrossRef
128.
go back to reference Qu S, Hu S, Xu H, Wu Y, Ming S, Zhan X et al. TREM-2 drives development of multiple sclerosis by promoting pathogenic Th17 polarization. Neurosci Bull. 2023:1–18. Qu S, Hu S, Xu H, Wu Y, Ming S, Zhan X et al. TREM-2 drives development of multiple sclerosis by promoting pathogenic Th17 polarization. Neurosci Bull. 2023:1–18.
129.
go back to reference Dong Y, D’Mello C, Pinsky W, Lozinski BM, Kaushik DK, Ghorbani S, et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat Neurosci. 2021;24(4):489–503.PubMedCrossRef Dong Y, D’Mello C, Pinsky W, Lozinski BM, Kaushik DK, Ghorbani S, et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat Neurosci. 2021;24(4):489–503.PubMedCrossRef
130.
go back to reference Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007;4(4):e124.PubMedPubMedCentralCrossRef Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007;4(4):e124.PubMedPubMedCentralCrossRef
131.
go back to reference Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, et al. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. 2007;37(5):1290–301.PubMedCrossRef Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, et al. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. 2007;37(5):1290–301.PubMedCrossRef
132.
go back to reference Negrotto L, Correale J. Amino acid catabolism in multiple sclerosis affects immune homeostasis. J Immunol. 2017;198(5):1900–9.PubMedCrossRef Negrotto L, Correale J. Amino acid catabolism in multiple sclerosis affects immune homeostasis. J Immunol. 2017;198(5):1900–9.PubMedCrossRef
133.
go back to reference Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, et al. Indolamine 2, 3-dioxygenase is expressed in the CNS and down‐regulates autoimmune inflammation. FASEB J. 2005;19(10):1347–9.PubMedCrossRef Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, et al. Indolamine 2, 3-dioxygenase is expressed in the CNS and down‐regulates autoimmune inflammation. FASEB J. 2005;19(10):1347–9.PubMedCrossRef
134.
go back to reference Baydyuk M, Cha DS, Hu J, Yamazaki R, Miller EM, Smith VN et al. Tracking the evolution of CNS remyelinating lesion in mice with neutral red dye. Proceedings of the National Academy of Sciences. 2019;116(28):14290-9. Baydyuk M, Cha DS, Hu J, Yamazaki R, Miller EM, Smith VN et al. Tracking the evolution of CNS remyelinating lesion in mice with neutral red dye. Proceedings of the National Academy of Sciences. 2019;116(28):14290-9.
135.
go back to reference Hu J, Melchor GS, Ladakis D, Reger J, Kim HW, Chamberlain KA, et al. Myeloid cell-associated aromatic amino acid metabolism facilitates CNS myelin regeneration. NPJ Regenerative Med. 2024;9(1):1.CrossRef Hu J, Melchor GS, Ladakis D, Reger J, Kim HW, Chamberlain KA, et al. Myeloid cell-associated aromatic amino acid metabolism facilitates CNS myelin regeneration. NPJ Regenerative Med. 2024;9(1):1.CrossRef
136.
go back to reference Fitzgerald KC, Smith MD, Kim S, Sotirchos ES, Kornberg MD, Douglas M et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep Med. 2021;2(10). Fitzgerald KC, Smith MD, Kim S, Sotirchos ES, Kornberg MD, Douglas M et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep Med. 2021;2(10).
137.
go back to reference van der Poel M, Ulas T, Mizee MR, Hsiao C-C, Miedema SS, Adelia n, et al. Transcriptional profiling of human microglia reveals grey–white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun. 2019;10(1):1139.PubMedPubMedCentralCrossRef van der Poel M, Ulas T, Mizee MR, Hsiao C-C, Miedema SS, Adelia n, et al. Transcriptional profiling of human microglia reveals grey–white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun. 2019;10(1):1139.PubMedPubMedCentralCrossRef
138.
go back to reference Mehta V, Pei W, Yang G, Li S, Swamy E, Boster A, et al. Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS ONE. 2013;8(3):e57573.PubMedPubMedCentralCrossRef Mehta V, Pei W, Yang G, Li S, Swamy E, Boster A, et al. Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS ONE. 2013;8(3):e57573.PubMedPubMedCentralCrossRef
139.
go back to reference Khalil M, Teunissen C, Langkammer C. Iron and neurodegeneration in multiple sclerosis. Multiple sclerosis international. 2011;2011. Khalil M, Teunissen C, Langkammer C. Iron and neurodegeneration in multiple sclerosis. Multiple sclerosis international. 2011;2011.
140.
go back to reference Proto JD, Zhang M, Ryan S, Yao X, Huang Y, Chang Y-C et al. Disrupted microglial iron homeostasis in progressive multiple sclerosis. bioRxiv. 2021:2021.05. 09.443127. Proto JD, Zhang M, Ryan S, Yao X, Huang Y, Chang Y-C et al. Disrupted microglial iron homeostasis in progressive multiple sclerosis. bioRxiv. 2021:2021.05. 09.443127.
141.
go back to reference Lee DW, Andersen JK. Role of HIF-1 in iron regulation: potential therapeutic strategy for neurodegenerative disorders. Curr Mol Med. 2006;6(8):883–93.PubMedCrossRef Lee DW, Andersen JK. Role of HIF-1 in iron regulation: potential therapeutic strategy for neurodegenerative disorders. Curr Mol Med. 2006;6(8):883–93.PubMedCrossRef
142.
go back to reference Rissanen E, Tuisku J, Rokka J, Paavilainen T, Parkkola R, Rinne JO, et al. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand 11 C-PK11195. J Nucl Med. 2014;55(6):939–44.PubMedCrossRef Rissanen E, Tuisku J, Rokka J, Paavilainen T, Parkkola R, Rinne JO, et al. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand 11 C-PK11195. J Nucl Med. 2014;55(6):939–44.PubMedCrossRef
143.
go back to reference Marras C, Beck J, Bower J, Roberts E, Ritz B, Ross G, et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinson’s Disease. 2018;4(1):21.PubMedPubMedCentralCrossRef Marras C, Beck J, Bower J, Roberts E, Ritz B, Ross G, et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinson’s Disease. 2018;4(1):21.PubMedPubMedCentralCrossRef
145.
go back to reference Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1–12.PubMedCrossRef Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1–12.PubMedCrossRef
146.
go back to reference Zhu B, Yin D, Zhao H, Zhang L, editors. The immunology of Parkinson’s disease. Seminars in Immunopathology. Springer; 2022. Zhu B, Yin D, Zhao H, Zhang L, editors. The immunology of Parkinson’s disease. Seminars in Immunopathology. Springer; 2022.
147.
go back to reference Lee H-J, Suk J-E, Bae E-J, Lee S-J. Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochem Biophys Res Commun. 2008;372(3):423–8.PubMedCrossRef Lee H-J, Suk J-E, Bae E-J, Lee S-J. Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochem Biophys Res Commun. 2008;372(3):423–8.PubMedCrossRef
148.
149.
go back to reference Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010;30(20):6838–51.PubMedPubMedCentralCrossRef Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010;30(20):6838–51.PubMedPubMedCentralCrossRef
150.
go back to reference Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegeneration. 2012;7:1–18.CrossRef Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegeneration. 2012;7:1–18.CrossRef
151.
go back to reference Bliederhaeuser C, Grozdanov V, Speidel A, Zondler L, Ruf WP, Bayer H, et al. Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathol. 2016;131:379–91.PubMedCrossRef Bliederhaeuser C, Grozdanov V, Speidel A, Zondler L, Ruf WP, Bayer H, et al. Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathol. 2016;131:379–91.PubMedCrossRef
152.
go back to reference Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca FA, et al. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 2011;19:63–72.PubMedCrossRef Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca FA, et al. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 2011;19:63–72.PubMedCrossRef
153.
go back to reference Rueda-Carrasco J, Sokolova D, Lee SE, Childs T, Jurčáková N, Crowley G, et al. Microglia‐synapse engulfment via PtdSer‐TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 2023;42(19):e113246.PubMedPubMedCentralCrossRef Rueda-Carrasco J, Sokolova D, Lee SE, Childs T, Jurčáková N, Crowley G, et al. Microglia‐synapse engulfment via PtdSer‐TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 2023;42(19):e113246.PubMedPubMedCentralCrossRef
154.
go back to reference Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The contribution of microglia to neuroinflammation in Parkinson’s disease. Int J Mol Sci. 2021;22(9):4676.PubMedPubMedCentralCrossRef Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The contribution of microglia to neuroinflammation in Parkinson’s disease. Int J Mol Sci. 2021;22(9):4676.PubMedPubMedCentralCrossRef
155.
go back to reference Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s Dement. 2016;12(6):719–32.CrossRef Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s Dement. 2016;12(6):719–32.CrossRef
156.
go back to reference Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE, et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging. 2014;35(5):1111–5.PubMedPubMedCentralCrossRef Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE, et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging. 2014;35(5):1111–5.PubMedPubMedCentralCrossRef
157.
go back to reference Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38(6):938–49.PubMedPubMedCentralCrossRef Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38(6):938–49.PubMedPubMedCentralCrossRef
158.
go back to reference Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Imaging microglial activation in Huntington’s disease. Brain Res Bull. 2007;72(2–3):148–51.PubMedCrossRef Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Imaging microglial activation in Huntington’s disease. Brain Res Bull. 2007;72(2–3):148–51.PubMedCrossRef
159.
go back to reference Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S, et al. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(1):47–52.PubMedCrossRef Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S, et al. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(1):47–52.PubMedCrossRef
160.
go back to reference Qiao H, He X, Zhang Q, Yuan H, Wang D, Li L, et al. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int J Biol Macromol. 2019;129:601–7.PubMedCrossRef Qiao H, He X, Zhang Q, Yuan H, Wang D, Li L, et al. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int J Biol Macromol. 2019;129:601–7.PubMedCrossRef
161.
go back to reference Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harbor Perspect Med. 2012;2(2):a009399.CrossRef Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harbor Perspect Med. 2012;2(2):a009399.CrossRef
162.
go back to reference Rodriguez-Araujo G, Nakagami H, Hayashi H, Mori M, Shiuchi T, Minokoshi Y, et al. Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt transduction pathway. Cell Mol Life Sci. 2013;70:1123–33.PubMedCrossRef Rodriguez-Araujo G, Nakagami H, Hayashi H, Mori M, Shiuchi T, Minokoshi Y, et al. Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt transduction pathway. Cell Mol Life Sci. 2013;70:1123–33.PubMedCrossRef
163.
go back to reference Lu J, Wang C, Cheng X, Wang R, Yan X, He P, et al. A breakdown in microglial metabolic reprogramming causes internalization dysfunction of α-synuclein in a mouse model of Parkinson’s disease. J Neuroinflamm. 2022;19(1):1–21.CrossRef Lu J, Wang C, Cheng X, Wang R, Yan X, He P, et al. A breakdown in microglial metabolic reprogramming causes internalization dysfunction of α-synuclein in a mouse model of Parkinson’s disease. J Neuroinflamm. 2022;19(1):1–21.CrossRef
164.
go back to reference Qiao H, He X, Zhang Q, Zhang N, Li L, Hui Y, et al. Α-synuclein induces microglial cell migration through stimulating HIF‐1α accumulation. J Neurosci Res. 2017;95(9):1809–17.PubMedCrossRef Qiao H, He X, Zhang Q, Zhang N, Li L, Hui Y, et al. Α-synuclein induces microglial cell migration through stimulating HIF‐1α accumulation. J Neurosci Res. 2017;95(9):1809–17.PubMedCrossRef
165.
go back to reference Nakai D, Yuasa S, Takahashi M, Shimizu T, Asaumi S, Isono K, et al. Mouse homologue of coq7/clk-1, longevity gene in Caenorhabditis elegans, is essential for coenzyme Q synthesis, maintenance of mitochondrial integrity, and neurogenesis. Biochem Biophys Res Commun. 2001;289(2):463–71.PubMedCrossRef Nakai D, Yuasa S, Takahashi M, Shimizu T, Asaumi S, Isono K, et al. Mouse homologue of coq7/clk-1, longevity gene in Caenorhabditis elegans, is essential for coenzyme Q synthesis, maintenance of mitochondrial integrity, and neurogenesis. Biochem Biophys Res Commun. 2001;289(2):463–71.PubMedCrossRef
166.
go back to reference Gu R, Zhang F, Chen G, Han C, Liu J, Ren Z, et al. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming. Brain Behav Immun. 2017;60:206–19.PubMedCrossRef Gu R, Zhang F, Chen G, Han C, Liu J, Ren Z, et al. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming. Brain Behav Immun. 2017;60:206–19.PubMedCrossRef
167.
go back to reference Joshi L, Plastira I, Bernhart E, Reicher H, Koyani CN, Madl T, et al. Lysophosphatidic acid induces aerobic glycolysis, lipogenesis, and increased amino acid uptake in BV-2 microglia. Int J Mol Sci. 2021;22(4):1968.PubMedPubMedCentralCrossRef Joshi L, Plastira I, Bernhart E, Reicher H, Koyani CN, Madl T, et al. Lysophosphatidic acid induces aerobic glycolysis, lipogenesis, and increased amino acid uptake in BV-2 microglia. Int J Mol Sci. 2021;22(4):1968.PubMedPubMedCentralCrossRef
168.
go back to reference Panicker N, Sarkar S, Harischandra DS, Neal M, Kam T-I, Jin H, et al. Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med. 2019;216(6):1411.PubMedPubMedCentralCrossRef Panicker N, Sarkar S, Harischandra DS, Neal M, Kam T-I, Jin H, et al. Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med. 2019;216(6):1411.PubMedPubMedCentralCrossRef
169.
go back to reference Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson’s disease rat model. ACS Chem Neurosci. 2021;12(4):689–703.PubMedCrossRef Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson’s disease rat model. ACS Chem Neurosci. 2021;12(4):689–703.PubMedCrossRef
170.
go back to reference Zhou Q, Zhang Y, Lu L, Zhang H, Zhao C, Pu Y, et al. Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder. Food Chem Toxicol. 2022;168:113369.PubMedCrossRef Zhou Q, Zhang Y, Lu L, Zhang H, Zhao C, Pu Y, et al. Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder. Food Chem Toxicol. 2022;168:113369.PubMedCrossRef
171.
go back to reference Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281(30):21362–8.PubMedCrossRef Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281(30):21362–8.PubMedCrossRef
172.
go back to reference Reynolds AD, Kadiu I, Garg SK, Glanzer JG, Nordgren T, Ciborowski P, et al. Nitrated alpha-synuclein and microglial neuroregulatory activities. J Neuroimmune Pharmacol. 2008;3:59–74.PubMedPubMedCentralCrossRef Reynolds AD, Kadiu I, Garg SK, Glanzer JG, Nordgren T, Ciborowski P, et al. Nitrated alpha-synuclein and microglial neuroregulatory activities. J Neuroimmune Pharmacol. 2008;3:59–74.PubMedPubMedCentralCrossRef
173.
go back to reference Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98(3):641–53.PubMedCrossRef Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98(3):641–53.PubMedCrossRef
174.
go back to reference Lind-Holm Mogensen F, Sousa C, Ameli C, Badanjak K, Pereira SL, Muller A, et al. PARK7/DJ-1 deficiency impairs microglial activation in response to LPS-induced inflammation. J Neuroinflamm. 2024;21(1):174.CrossRef Lind-Holm Mogensen F, Sousa C, Ameli C, Badanjak K, Pereira SL, Muller A, et al. PARK7/DJ-1 deficiency impairs microglial activation in response to LPS-induced inflammation. J Neuroinflamm. 2024;21(1):174.CrossRef
175.
go back to reference Brekk OR, Honey JR, Lee S, Hallett PJ, Isacson O. Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance. Proceedings of the National Academy of Sciences. 2020;117(44):27646-54. Brekk OR, Honey JR, Lee S, Hallett PJ, Isacson O. Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance. Proceedings of the National Academy of Sciences. 2020;117(44):27646-54.
176.
go back to reference Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 2020;23(2):194–208.PubMedPubMedCentralCrossRef Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 2020;23(2):194–208.PubMedPubMedCentralCrossRef
177.
go back to reference Loving BA, Tang M, Neal MC, Gorkhali S, Murphy R, Eckel RH, et al. Lipoprotein lipase regulates microglial lipid droplet accumulation. Cells. 2021;10(2):198.PubMedPubMedCentralCrossRef Loving BA, Tang M, Neal MC, Gorkhali S, Murphy R, Eckel RH, et al. Lipoprotein lipase regulates microglial lipid droplet accumulation. Cells. 2021;10(2):198.PubMedPubMedCentralCrossRef
178.
go back to reference Illarioshkin S, Klyushnikov S, Vigont V, Seliverstov YA, Kaznacheyeva E. Molecular pathogenesis in Huntington’s disease. Biochem (Moscow). 2018;83:1030–9.CrossRef Illarioshkin S, Klyushnikov S, Vigont V, Seliverstov YA, Kaznacheyeva E. Molecular pathogenesis in Huntington’s disease. Biochem (Moscow). 2018;83:1030–9.CrossRef
179.
180.
181.
go back to reference Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH. Activation of the IκB kinase complex and nuclear factor-κB contributes to mutant huntingtin neurotoxicity. J Neurosci. 2004;24(37):7999–8008.PubMedPubMedCentralCrossRef Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH. Activation of the IκB kinase complex and nuclear factor-κB contributes to mutant huntingtin neurotoxicity. J Neurosci. 2004;24(37):7999–8008.PubMedPubMedCentralCrossRef
182.
183.
go back to reference Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ. Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol. 2010;90(2):230–45.PubMedCrossRef Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ. Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol. 2010;90(2):230–45.PubMedCrossRef
184.
go back to reference Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132(11):3152–64.PubMedCrossRef Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132(11):3152–64.PubMedCrossRef
185.
go back to reference Reijonen S, Kukkonen JP, Hyrskyluoto A, Kivinen J, Kairisalo M, Takei N, et al. Downregulation of NF-κB signaling by mutant huntingtin proteins induces oxidative stress and cell death. Cell Mol Life Sci. 2010;67:1929–41.PubMedPubMedCentralCrossRef Reijonen S, Kukkonen JP, Hyrskyluoto A, Kivinen J, Kairisalo M, Takei N, et al. Downregulation of NF-κB signaling by mutant huntingtin proteins induces oxidative stress and cell death. Cell Mol Life Sci. 2010;67:1929–41.PubMedPubMedCentralCrossRef
186.
go back to reference Bečanović K, Nørremølle A, Neal SJ, Kay C, Collins JA, Arenillas D, et al. A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease. Nat Neurosci. 2015;18(6):807–16.PubMedCrossRef Bečanović K, Nørremølle A, Neal SJ, Kay C, Collins JA, Arenillas D, et al. A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease. Nat Neurosci. 2015;18(6):807–16.PubMedCrossRef
187.
go back to reference Marcora E, Kennedy MB. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum Mol Genet. 2010;19(22):4373–84.PubMedPubMedCentralCrossRef Marcora E, Kennedy MB. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum Mol Genet. 2010;19(22):4373–84.PubMedPubMedCentralCrossRef
188.
go back to reference Träger U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S, et al. HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFκB pathway dysregulation. Brain. 2014;137(3):819–33.PubMedPubMedCentralCrossRef Träger U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S, et al. HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFκB pathway dysregulation. Brain. 2014;137(3):819–33.PubMedPubMedCentralCrossRef
189.
go back to reference Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, et al. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J. 2020;11:217–50.PubMedPubMedCentralCrossRef Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, et al. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J. 2020;11:217–50.PubMedPubMedCentralCrossRef
190.
go back to reference Wang Q, Zhao Y, Sun M, Liu S, Li B, Zhang L, et al. 2-Deoxy-d-glucose attenuates sevoflurane-induced neuroinflammation through nuclear factor-kappa B pathway in vitro. Toxicol in Vitro. 2014;28(7):1183–9.PubMedCrossRef Wang Q, Zhao Y, Sun M, Liu S, Li B, Zhang L, et al. 2-Deoxy-d-glucose attenuates sevoflurane-induced neuroinflammation through nuclear factor-kappa B pathway in vitro. Toxicol in Vitro. 2014;28(7):1183–9.PubMedCrossRef
191.
192.
go back to reference Giorgini F, Moller T, Kwan W, Zwilling D, Wacker JL, Hong S, et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J Biol Chem. 2008;283(12):7390–400.PubMedCrossRef Giorgini F, Moller T, Kwan W, Zwilling D, Wacker JL, Hong S, et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J Biol Chem. 2008;283(12):7390–400.PubMedCrossRef
193.
go back to reference Ryu JK, Kim SU, McLarnon JG. Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington’s disease. Exp Neurol. 2004;187(1):150–9.PubMedCrossRef Ryu JK, Kim SU, McLarnon JG. Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington’s disease. Exp Neurol. 2004;187(1):150–9.PubMedCrossRef
194.
go back to reference Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol. 2015;194(12):6082–9.PubMedCrossRef Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol. 2015;194(12):6082–9.PubMedCrossRef
195.
go back to reference Van Bergen JM, Hua J, Unschuld PG, Lim IAL, Jones CK, Margolis RL, et al. Quantitative susceptibility mapping suggests altered brain iron in Premanifest Huntington disease. Am J Neuroradiol. 2016;37(5):789–96.PubMedPubMedCentralCrossRef Van Bergen JM, Hua J, Unschuld PG, Lim IAL, Jones CK, Margolis RL, et al. Quantitative susceptibility mapping suggests altered brain iron in Premanifest Huntington disease. Am J Neuroradiol. 2016;37(5):789–96.PubMedPubMedCentralCrossRef
196.
go back to reference Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J. Increased basal ganglia iron levels in Huntington disease. Arch Neurol. 1999;56(5):569–74.PubMedCrossRef Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J. Increased basal ganglia iron levels in Huntington disease. Arch Neurol. 1999;56(5):569–74.PubMedCrossRef
197.
go back to reference Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia. 2007;55(10):1074–84.PubMedCrossRef Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia. 2007;55(10):1074–84.PubMedCrossRef
198.
go back to reference González-Guevara E, Cárdenas G, Pérez‐Severiano F, Martínez‐Lazcano JC. Dysregulated brain cholesterol metabolism is linked to neuroinflammation in Huntington’s disease. Mov Disord. 2020;35(7):1113–27.PubMedCrossRef González-Guevara E, Cárdenas G, Pérez‐Severiano F, Martínez‐Lazcano JC. Dysregulated brain cholesterol metabolism is linked to neuroinflammation in Huntington’s disease. Mov Disord. 2020;35(7):1113–27.PubMedCrossRef
199.
200.
go back to reference Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009;65(S1):S3–9.PubMedCrossRef Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009;65(S1):S3–9.PubMedCrossRef
201.
go back to reference Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4 + T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proceedings of the National Academy of Sciences. 2008;105(40):15558-63. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4 + T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proceedings of the National Academy of Sciences. 2008;105(40):15558-63.
202.
go back to reference Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10(3):253–63.PubMedCrossRef Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10(3):253–63.PubMedCrossRef
203.
go back to reference Funalot B, Desport J-C, Sturtz F, Camu W, Couratier P. High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10(2):113–7.PubMedCrossRef Funalot B, Desport J-C, Sturtz F, Camu W, Couratier P. High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10(2):113–7.PubMedCrossRef
204.
205.
go back to reference Tefera TW, Borges K. Metabolic dysfunctions in amyotrophic lateral sclerosis pathogenesis and potential metabolic treatments. Front NeuroSci. 2017;10:611.PubMedPubMedCentralCrossRef Tefera TW, Borges K. Metabolic dysfunctions in amyotrophic lateral sclerosis pathogenesis and potential metabolic treatments. Front NeuroSci. 2017;10:611.PubMedPubMedCentralCrossRef
206.
go back to reference Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington’s disease. Rev Neurosci. 2018;29(5):547–55.PubMedCrossRef Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington’s disease. Rev Neurosci. 2018;29(5):547–55.PubMedCrossRef
207.
go back to reference Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem. 2002;80(4):616–25.PubMedCrossRef Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem. 2002;80(4):616–25.PubMedCrossRef
208.
go back to reference Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Annals Neurology: Official J Am Neurol Association Child Neurol Soc. 1999;46(5):787–90.CrossRef Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Annals Neurology: Official J Am Neurol Association Child Neurol Soc. 1999;46(5):787–90.CrossRef
209.
go back to reference Carrì MT, D’Ambrosi N, Cozzolino M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochem Biophys Res Commun. 2017;483(4):1187–93.PubMedCrossRef Carrì MT, D’Ambrosi N, Cozzolino M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochem Biophys Res Commun. 2017;483(4):1187–93.PubMedCrossRef
210.
go back to reference Sunyach C, Michaud M, Arnoux T, Bernard-Marissal N, Aebischer J, Latyszenok V, et al. Olesoxime delays muscle denervation, astrogliosis, microglial activation and motoneuron death in an ALS mouse model. Neuropharmacology. 2012;62(7):2346–53.PubMedCrossRef Sunyach C, Michaud M, Arnoux T, Bernard-Marissal N, Aebischer J, Latyszenok V, et al. Olesoxime delays muscle denervation, astrogliosis, microglial activation and motoneuron death in an ALS mouse model. Neuropharmacology. 2012;62(7):2346–53.PubMedCrossRef
211.
go back to reference Niida-Kawaguchi M, Kakita A, Noguchi N, Kazama M, Masui K, Kato Y, et al. Soluble iron accumulation induces microglial glutamate release in the spinal cord of sporadic amyotrophic lateral sclerosis. Neuropathology. 2020;40(2):152–66.PubMedCrossRef Niida-Kawaguchi M, Kakita A, Noguchi N, Kazama M, Masui K, Kato Y, et al. Soluble iron accumulation induces microglial glutamate release in the spinal cord of sporadic amyotrophic lateral sclerosis. Neuropathology. 2020;40(2):152–66.PubMedCrossRef
212.
go back to reference Milanese M, Giribaldi F, Melone M, Bonifacino T, Musante I, Carminati E, et al. Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2014;64:48–59.PubMedCrossRef Milanese M, Giribaldi F, Melone M, Bonifacino T, Musante I, Carminati E, et al. Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2014;64:48–59.PubMedCrossRef
213.
go back to reference Parone PA, Da Cruz S, Han JS, McAlonis-Downes M, Vetto AP, Lee SK, et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J Neurosci. 2013;33(11):4657–71.PubMedPubMedCentralCrossRef Parone PA, Da Cruz S, Han JS, McAlonis-Downes M, Vetto AP, Lee SK, et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J Neurosci. 2013;33(11):4657–71.PubMedPubMedCentralCrossRef
214.
go back to reference Bonifacino T, Cattaneo L, Gallia E, Puliti A, Melone M, Provenzano F, et al. In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neuropharmacology. 2017;123:433–45.PubMedCrossRef Bonifacino T, Cattaneo L, Gallia E, Puliti A, Melone M, Provenzano F, et al. In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neuropharmacology. 2017;123:433–45.PubMedCrossRef
215.
go back to reference Hu Y, Cao K, Wang F, Wu W, Mai W, Qiu L, et al. Dual roles of hexokinase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity. Nat Metabolism. 2022;4(12):1756–74.CrossRef Hu Y, Cao K, Wang F, Wu W, Mai W, Qiu L, et al. Dual roles of hexokinase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity. Nat Metabolism. 2022;4(12):1756–74.CrossRef
216.
go back to reference Haney MS, Pálovics R, Munson CN, Long C, Johansson PK, Yip O et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature. 2024:1–8. Haney MS, Pálovics R, Munson CN, Long C, Johansson PK, Yip O et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature. 2024:1–8.
217.
go back to reference Hopperton KE, Trépanier M-O, Giuliano V, Bazinet RP. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1–40 in mice. J Neuroinflamm. 2016;13:1–18.CrossRef Hopperton KE, Trépanier M-O, Giuliano V, Bazinet RP. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1–40 in mice. J Neuroinflamm. 2016;13:1–18.CrossRef
218.
go back to reference Leng L, Yuan Z, Pan R, Su X, Wang H, Xue J, et al. Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance. Nat Metabolism. 2022;4(10):1287–305.CrossRef Leng L, Yuan Z, Pan R, Su X, Wang H, Xue J, et al. Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance. Nat Metabolism. 2022;4(10):1287–305.CrossRef
219.
go back to reference Gonzalez-Gil A, Porell RN, Fernandes SM, Maenpaa E, Li TA, Li T et al. Human brain sialoglycan ligand for CD33, a microglial inhibitory siglec implicated in Alzheimer’s disease. J Biol Chem. 2022;298(6). Gonzalez-Gil A, Porell RN, Fernandes SM, Maenpaa E, Li TA, Li T et al. Human brain sialoglycan ligand for CD33, a microglial inhibitory siglec implicated in Alzheimer’s disease. J Biol Chem. 2022;298(6).
220.
go back to reference Lin Y-T, Seo J, Gao F, Feldman HM, Wen H-L, Penney J, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98(6):1141–54. e7.PubMedPubMedCentralCrossRef Lin Y-T, Seo J, Gao F, Feldman HM, Wen H-L, Penney J, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98(6):1141–54. e7.PubMedPubMedCentralCrossRef
221.
go back to reference Victor MB, Leary N, Luna X, Meharena HS, Scannail AN, Bozzelli PL, et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell. 2022;29(8):1197–212. e8.PubMedPubMedCentralCrossRef Victor MB, Leary N, Luna X, Meharena HS, Scannail AN, Bozzelli PL, et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell. 2022;29(8):1197–212. e8.PubMedPubMedCentralCrossRef
222.
go back to reference Liu C-C, Wang N, Chen Y, Inoue Y, Shue F, Ren Y, et al. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease. Nat Immunol. 2023;24(11):1854–66.PubMedCrossRef Liu C-C, Wang N, Chen Y, Inoue Y, Shue F, Ren Y, et al. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease. Nat Immunol. 2023;24(11):1854–66.PubMedCrossRef
223.
go back to reference Lee S, Devanney NA, Golden LR, Smith CT, Schwartz JL, Walsh AE et al. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep. 2023;42(3). Lee S, Devanney NA, Golden LR, Smith CT, Schwartz JL, Walsh AE et al. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep. 2023;42(3).
224.
go back to reference Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’microglia and patterns of their activation in active multiple sclerosis. Brain. 2017;140(7):1900–13.PubMedPubMedCentralCrossRef Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’microglia and patterns of their activation in active multiple sclerosis. Brain. 2017;140(7):1900–13.PubMedPubMedCentralCrossRef
225.
go back to reference Shijie J, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J Exp Med. 2009;217(2):87–92.PubMedCrossRef Shijie J, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J Exp Med. 2009;217(2):87–92.PubMedCrossRef
226.
go back to reference Meng F, Yu W, Duan W, Wang T, Liu Y. Dexmedetomidine attenuates LPS-mediated BV2 microglia cells inflammation via inhibition of glycolysis. Fundam Clin Pharmacol. 2020;34(3):313–20.PubMedCrossRef Meng F, Yu W, Duan W, Wang T, Liu Y. Dexmedetomidine attenuates LPS-mediated BV2 microglia cells inflammation via inhibition of glycolysis. Fundam Clin Pharmacol. 2020;34(3):313–20.PubMedCrossRef
227.
go back to reference Sradhanjali S, Reddy MM. Inhibition of pyruvate dehydrogenase kinase as a therapeutic strategy against Cancer. Curr Top Med Chem. 2018;18(6):444–53.PubMedCrossRef Sradhanjali S, Reddy MM. Inhibition of pyruvate dehydrogenase kinase as a therapeutic strategy against Cancer. Curr Top Med Chem. 2018;18(6):444–53.PubMedCrossRef
228.
go back to reference Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME. The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys. 2009;75(3):870–7.PubMedPubMedCentralCrossRef Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME. The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys. 2009;75(3):870–7.PubMedPubMedCentralCrossRef
229.
go back to reference Bernardo A, Minghetti L. PPAR-γ Agonists as Regulators of Microglial Activation and Brain Inflammation. Current Pharmaceutical Design. 2006;12(1):93–109. Bernardo A, Minghetti L. PPAR-γ Agonists as Regulators of Microglial Activation and Brain Inflammation. Current Pharmaceutical Design. 2006;12(1):93–109.
230.
go back to reference Carta AR, Pisanu A. Modulating microglia activity with PPAR-γ agonists: a promising therapy for Parkinson’s disease? Neurotox Res. 2013;23(2):112–23.PubMedCrossRef Carta AR, Pisanu A. Modulating microglia activity with PPAR-γ agonists: a promising therapy for Parkinson’s disease? Neurotox Res. 2013;23(2):112–23.PubMedCrossRef
231.
232.
go back to reference Vilalta A, Brown GC. Deoxyglucose prevents neurodegeneration in culture by eliminating microglia. J Neuroinflamm. 2014;11:1–10.CrossRef Vilalta A, Brown GC. Deoxyglucose prevents neurodegeneration in culture by eliminating microglia. J Neuroinflamm. 2014;11:1–10.CrossRef
233.
go back to reference He D, Xu H, Zhang H, Tang R, Lan Y, Xing R, et al. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity. 2022;55(1):159–73. e9.PubMedPubMedCentralCrossRef He D, Xu H, Zhang H, Tang R, Lan Y, Xing R, et al. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity. 2022;55(1):159–73. e9.PubMedPubMedCentralCrossRef
234.
go back to reference Lauro C, Limatola C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front Immunol. 2020;11:523362.CrossRef Lauro C, Limatola C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front Immunol. 2020;11:523362.CrossRef
235.
go back to reference Mikitsh JL, Chacko A-M. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Med Chem. 2014;6:PMC. Mikitsh JL, Chacko A-M. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Med Chem. 2014;6:PMC.
Metadata
Title
Fueling neurodegeneration: metabolic insights into microglia functions
Authors
Mohammadamin Sadeghdoust
Aysika Das
Deepak Kumar Kaushik
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03296-0