12-04-2025 | Alzheimer's Disease | Review Article
The future of Alzheimer’s disease risk prediction: a systematic review
Author: Sophia Nazir
Published in: Neurological Sciences
Login to get accessAbstract
Background
Alzheimer's disease is the most prevalent kind of age-associated dementia among older adults globally. Traditional diagnostic models for predicting Alzheimer's disease risks primarily rely on demographic and clinical data to develop policies and assess probabilities. However, recent advancements in machine learning (ML) and other artificial intelligence (AI) have shown promise in developing personalized risk models. These models use specific patient data from medical imaging and related reports. In this systematic review, different studies comprehensively examined the use of ML in magnetic resonance imaging (MRI), genetics, radiomics, and medical data for Alzheimer's disease risk assessment. I highlighted the results of our rigorous analysis of this research and emphasized the exciting potential of ML methods for Alzheimer's disease risk prediction. We also looked at current research projects and possible uses of AI-driven methods to enhance Alzheimer's disease risk prediction and enable more efficient investigating and individualized risk mitigation strategies.
Aim and methods
This review integrates both conventional and AI-based models to thoroughly analyze neuroimaging and non-neuroimaging features used in Alzheimer's disease prediction. This study examined factors related to imaging, radiomics, genetics, and clinical aspects. In addition, this study comprehensively presented machine learning for predicting the risk of Alzheimer's disease detection to benefit both beginner and expert researchers.
Results
A total of 700 publications from 2000 and 2024, were initially retrieved, out of which 120 studies met the inclusion criteria and were elected for review. The diagnosis of neurological disorders, along with the application of deep learning (DL) and machine learning (ML) were central themes in studies on the subject. When analyzing the medical implementation or design of innovative models, various machine learning models applied to neuroimaging and non-neuroimaging data may help researchers and clinicians become more informed. This review provides an extensive guide to the state of Alzheimer's disease risk assessment with artificial AI.
Conclusion
By integrating diverse neuroimaging and non-neuroimaging data sources, this study provides researchers with an alternative viewpoint on the application of AI in Alzheimer’s disease risk prediction emphasizing its potential to improve early diagnosis and personalized intervention strategies.
Advertisement