Skip to main content
Top

Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives

Published in:

Abstract

Deep learning algorithms have a huge influence on tackling research issues in the field of medical image processing. It acts as a vital aid for the radiologists in producing accurate results toward effective disease diagnosis. The objective of this research is to highlight the importance of deep learning models in the detection of Alzheimer's Disease (AD). The main objective of this research is to analyze different deep learning methods used for detecting AD. This study examines 103 research articles published in various research databases. These articles have been selected based on specific criteria to find the most relevant findings in the field of AD detection. The review was carried out based on deep learning techniques such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transfer Learning (TL). To propose accurate methods for the detection, segmentation, and severity grading of AD, the radiological features need to be examined in greater depth. This review attempts to analyze different deep learning methods applied for AD detection using neuroimaging modalities like Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), etc. The focus of this review is restricted to deep learning works based on radiological imaging data for AD detection. There are a few works that have utilized other biomarkers to understand the effect of AD. Also, articles published in English were alone considered for analysis. This work concludes by highlighting the key research issues towards effective AD detection. Though several methods have yielded promising results in AD detection, the progression from Mild Cognitive Impairment (MCI) to AD need to be analyzed in greater depth using DL models.
Title
Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives
Authors
T. Illakiya
R. Karthik
Publication date
01-04-2023
Publisher
Springer US
Published in
Neuroinformatics / Issue 2/2023
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-023-09625-7
This content is only visible if you are logged in and have the appropriate permissions.
This content is only visible if you are logged in and have the appropriate permissions.

Keynote webinar | Spotlight on functional neurological disorder

FND perplexes and frustrates patients and physicians alike. Limited knowledge and insufficient awareness delays diagnosis and treatment, and many patients feel misunderstood and stigmatized. How can you recognize FND and what are the treatment options?

Prof. Mark Edwards
Watch now
Video

How can you integrate PET into your practice? (Link opens in a new window)

1.5 AMA PRA Category 1 Credit(s)™

PET imaging is playing an increasingly critical role in managing AD. Our expert-led program will empower you with practical strategies and real-world case studies to effectively integrate it into clinical practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Health+ IME
Learn more
Image Credits
Human brain illustration/© (M) CHRISTOPH BURGSTEDT / SCIENCE PHOTO LIBRARY / Getty Images, Navigating neuroimaging in Alzheimer’s care: Practical applications and strategies for integration/© Springer Healthcare IME