Skip to main content
Top
Published in:

01-11-2024 | Review Article

Advancements in long non-coding RNA-based therapies for cancer: targeting, delivery, and clinical implications

Authors: Muhammad Ammad, Zeeshan Javed, Haleema Sadia, Rais Ahmed, Ali Akbar, Tariq Nadeem, Daniela Calina, Javad Sharifi-Rad

Published in: Medical Oncology | Issue 11/2024

Login to get access

Abstract

Long non-coding RNAs (lncRNAs) have been in the spotlight for the past two decades due to their extensive role in regulating a wide range of cellular processes. Development, differentiation, regulation, and modulation are some of the vital cellular cascades coordinated by these molecules. Despite their importance, there has been limited literature on their practical implications in cancer prevention. Advancements in lncRNA biology have enabled the characterization of numerous secondary structures and sequence motifs, which could serve as potential targets for cellular therapies. Several studies have highlighted the involvement of lncRNAs in human pathologies, where they can be targeted by small molecules or antisense oligonucleotides to prevent diseases. However, progress has been hindered by the challenge of developing specific delivery vehicles for targeted delivery. Recent improvements in sequence optimization and nucleotide modification have enhanced drug stability and reduced the immunogenicity of lncRNA-based therapies, yet further advances are needed to fully realize their potential in treating complex diseases like cancer. This review aims to explore current lncRNA biology, their mechanisms of action, nanoformulation strategies, and the clinical trials focused on lncRNA delivery systems.
Literature
1.
go back to reference Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018;7:1–14.CrossRef Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018;7:1–14.CrossRef
2.
go back to reference Chen X, Yan CC, Zhang X, You Z-H. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform. 2017;18:558–76.PubMed Chen X, Yan CC, Zhang X, You Z-H. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform. 2017;18:558–76.PubMed
4.
go back to reference Huang C-K, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 2020;126:663–78.PubMedPubMedCentralCrossRef Huang C-K, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 2020;126:663–78.PubMedPubMedCentralCrossRef
5.
go back to reference Zaki A, Ali MS, Hadda V, Ali SM, Chopra A, Fatma T. Long non-coding RNA (lncRNA): a potential therapeutic target in acute lung injury. Genes Dis. 2022;9:1258–68.PubMedCrossRef Zaki A, Ali MS, Hadda V, Ali SM, Chopra A, Fatma T. Long non-coding RNA (lncRNA): a potential therapeutic target in acute lung injury. Genes Dis. 2022;9:1258–68.PubMedCrossRef
8.
go back to reference Khorkova O, Stahl J, Joji A, Volmar C-H, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov. 2023;18:1011–29.PubMedCrossRef Khorkova O, Stahl J, Joji A, Volmar C-H, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov. 2023;18:1011–29.PubMedCrossRef
9.
go back to reference Ma B, Wang S, Wu W, Shan P, Chen Y, Meng J, Xing L, Yun J, Hao L, Wang X. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed Pharmacother. 2023;162:114672.PubMedCrossRef Ma B, Wang S, Wu W, Shan P, Chen Y, Meng J, Xing L, Yun J, Hao L, Wang X. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed Pharmacother. 2023;162:114672.PubMedCrossRef
10.
go back to reference Pandya G, Kirtonia A, Sethi G, Pandey AK, Garg M. The implication of long non-coding RNAs in the diagnosis pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim et Biophys Acta (BBA)-Rev Cancer. 2020;1874:188423.CrossRef Pandya G, Kirtonia A, Sethi G, Pandey AK, Garg M. The implication of long non-coding RNAs in the diagnosis pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim et Biophys Acta (BBA)-Rev Cancer. 2020;1874:188423.CrossRef
11.
go back to reference Irfan M, Javed Z, Khan K, Khan N, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Apoptosis evasion via long non-coding RNAs in colorectal cancer. Cancer Cell Int. 2022;22:280.PubMedPubMedCentralCrossRef Irfan M, Javed Z, Khan K, Khan N, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Apoptosis evasion via long non-coding RNAs in colorectal cancer. Cancer Cell Int. 2022;22:280.PubMedPubMedCentralCrossRef
12.
15.
16.
18.
go back to reference Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022;23:389–406.PubMedCrossRef Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022;23:389–406.PubMedCrossRef
19.
go back to reference Hainer SJ, Gu W, Carone BR, Landry BD, Rando OJ, Mello CC, Fazzio TG. Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev. 2015;29:362–78.PubMedPubMedCentralCrossRef Hainer SJ, Gu W, Carone BR, Landry BD, Rando OJ, Mello CC, Fazzio TG. Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev. 2015;29:362–78.PubMedPubMedCentralCrossRef
20.
go back to reference Lim B, Levine MS. Enhancer-promoter communication: hubs or loops? Curr Opin Genet Dev. 2021;67:5–9.PubMedCrossRef Lim B, Levine MS. Enhancer-promoter communication: hubs or loops? Curr Opin Genet Dev. 2021;67:5–9.PubMedCrossRef
21.
go back to reference García-Muse T, Aguilera A. R loops: from physiological to pathological roles. Cell. 2019;179:604–18.PubMedCrossRef García-Muse T, Aguilera A. R loops: from physiological to pathological roles. Cell. 2019;179:604–18.PubMedCrossRef
22.
go back to reference Ariel F, Lucero L, Christ A, Mammarella MF, Jegu T, Veluchamy A, Mariappan K, Latrasse D, Blein T, Liu C. R-loop mediated trans action of the APOLO long noncoding RNA. Mol Cell. 2020;77(1055–1065):e4. Ariel F, Lucero L, Christ A, Mammarella MF, Jegu T, Veluchamy A, Mariappan K, Latrasse D, Blein T, Liu C. R-loop mediated trans action of the APOLO long noncoding RNA. Mol Cell. 2020;77(1055–1065):e4.
23.
go back to reference Blank-Giwojna A, Postepska-Igielska A, Grummt I. lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators. Cell Rep. 2019;26(2904–2915):e4. Blank-Giwojna A, Postepska-Igielska A, Grummt I. lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators. Cell Rep. 2019;26(2904–2915):e4.
24.
go back to reference Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. In: Ahmad A, editor. Seminars in cancer biology. Amsterdam: Elsevier; 2022. pp. 197–207. Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. In: Ahmad A, editor. Seminars in cancer biology. Amsterdam: Elsevier; 2022. pp. 197–207.
25.
go back to reference Li X, Wu Z, Fu X, Han W. lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res/Rev Mutat Res. 2014;762:1–21.PubMedCrossRef Li X, Wu Z, Fu X, Han W. lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res/Rev Mutat Res. 2014;762:1–21.PubMedCrossRef
26.
27.
go back to reference Zhang X, Hong R, Chen W, Xu M, Wang L. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019;92:103214.PubMedCrossRef Zhang X, Hong R, Chen W, Xu M, Wang L. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019;92:103214.PubMedCrossRef
28.
go back to reference Chang L, Li J, Ding J, Lian Y, Huangfu C, Wang K. Roles of long noncoding RNAs on tumor immune escape by regulating immune cells differentiation and function. Am J Cancer Res. 2021;11:2369.PubMedPubMedCentral Chang L, Li J, Ding J, Lian Y, Huangfu C, Wang K. Roles of long noncoding RNAs on tumor immune escape by regulating immune cells differentiation and function. Am J Cancer Res. 2021;11:2369.PubMedPubMedCentral
29.
go back to reference Constanty F, Shkumatava A. lncRNAs in development and differentiation: from sequence motifs to functional characterization. Development. 2021;148:dev182741.PubMedCrossRef Constanty F, Shkumatava A. lncRNAs in development and differentiation: from sequence motifs to functional characterization. Development. 2021;148:dev182741.PubMedCrossRef
30.
go back to reference Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. 2021;41:109–20.CrossRef Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. 2021;41:109–20.CrossRef
31.
go back to reference Han S, Yan Y, Ren Y, Hu Y, Wang Y, Chen L, Zhi Z, Zheng Y, Shao Y, Liu J. LncRNA SAMMSON mediates adaptive resistance to RAF inhibition in BRAF-mutant melanoma cells. Can Res. 2021;81:2918–29.CrossRef Han S, Yan Y, Ren Y, Hu Y, Wang Y, Chen L, Zhi Z, Zheng Y, Shao Y, Liu J. LncRNA SAMMSON mediates adaptive resistance to RAF inhibition in BRAF-mutant melanoma cells. Can Res. 2021;81:2918–29.CrossRef
32.
go back to reference Jayasuriya R, Ganesan K, Xu B, Ramkumar KM. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother. 2022;145:112421.PubMedCrossRef Jayasuriya R, Ganesan K, Xu B, Ramkumar KM. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother. 2022;145:112421.PubMedCrossRef
33.
go back to reference Shi Y, Parag S, Patel R, Lui A, Murr M, Cai J, Patel NA. Stabilization of lncRNA GAS5 by a small molecule and its implications in diabetic adipocytes. Cell Chem Biol. 2019;26(319–330):e6. Shi Y, Parag S, Patel R, Lui A, Murr M, Cai J, Patel NA. Stabilization of lncRNA GAS5 by a small molecule and its implications in diabetic adipocytes. Cell Chem Biol. 2019;26(319–330):e6.
35.
go back to reference Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M. RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem. 2020;121:898–929.PubMedCrossRef Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M. RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem. 2020;121:898–929.PubMedCrossRef
36.
go back to reference Javed Z, Khan K, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. LncRNA & Wnt signaling in colorectal cancer. Cancer Cell Int. 2020;20:1–10.CrossRef Javed Z, Khan K, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. LncRNA & Wnt signaling in colorectal cancer. Cancer Cell Int. 2020;20:1–10.CrossRef
38.
go back to reference Zhang R, Li J, Li G, Jin F, Wang Z, Yue R, Wang Y, Wang X, Sun Y. LncRNA Nron regulates osteoclastogenesis during orthodontic bone resorption. Int J Oral Sci. 2020;12:14.PubMedPubMedCentralCrossRef Zhang R, Li J, Li G, Jin F, Wang Z, Yue R, Wang Y, Wang X, Sun Y. LncRNA Nron regulates osteoclastogenesis during orthodontic bone resorption. Int J Oral Sci. 2020;12:14.PubMedPubMedCentralCrossRef
39.
go back to reference Lin C, Li Y, Zhang E, Feillet F, Zhang S, Blau N. Importance of the long non-coding RNA (lncRNA) transcript HULC for the regulation of phenylalanine hydroxylase and treatment of phenylketonuria. Mol Genet Metab. 2022;135:171–8.PubMedCrossRef Lin C, Li Y, Zhang E, Feillet F, Zhang S, Blau N. Importance of the long non-coding RNA (lncRNA) transcript HULC for the regulation of phenylalanine hydroxylase and treatment of phenylketonuria. Mol Genet Metab. 2022;135:171–8.PubMedCrossRef
42.
go back to reference di Martino MT, Riillo C, Scionti F, Grillone K, Polerà N, Caracciolo D, Arbitrio M, Tagliaferri P, Tassone P. miRNAs and lncRNAs as novel therapeutic targets to improve cancer immunotherapy. Cancers. 2021;13:1587.PubMedPubMedCentralCrossRef di Martino MT, Riillo C, Scionti F, Grillone K, Polerà N, Caracciolo D, Arbitrio M, Tagliaferri P, Tassone P. miRNAs and lncRNAs as novel therapeutic targets to improve cancer immunotherapy. Cancers. 2021;13:1587.PubMedPubMedCentralCrossRef
43.
go back to reference Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N. Molecular Landscape of LncRNAs in prostate cancer: a focus on pathways and therapeutic targets for intervention. J Exp Clin Cancer Res. 2022;41:214.PubMedPubMedCentralCrossRef Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N. Molecular Landscape of LncRNAs in prostate cancer: a focus on pathways and therapeutic targets for intervention. J Exp Clin Cancer Res. 2022;41:214.PubMedPubMedCentralCrossRef
44.
go back to reference Shao M, Yu Z, Zou J. LncRNA-SNHG16 silencing inhibits prostate carcinoma cell growth, downregulate GLUT1 expression and reduce glucose uptake. Cancer Manag Res. 2020;12:1751–7.PubMedPubMedCentralCrossRef Shao M, Yu Z, Zou J. LncRNA-SNHG16 silencing inhibits prostate carcinoma cell growth, downregulate GLUT1 expression and reduce glucose uptake. Cancer Manag Res. 2020;12:1751–7.PubMedPubMedCentralCrossRef
45.
go back to reference Ranasinghe P, Addison ML, Dear JW, Webb DJ. Small interfering RNA: Discovery, pharmacology and clinical development—an introductory review. Br J Pharmacol. 2023;180:2697–720.PubMedCrossRef Ranasinghe P, Addison ML, Dear JW, Webb DJ. Small interfering RNA: Discovery, pharmacology and clinical development—an introductory review. Br J Pharmacol. 2023;180:2697–720.PubMedCrossRef
46.
go back to reference Alzhrani R, Alsaab HO, Petrovici A, Bhise K, Vanamala K, Sau S, Krinock MJ, Iyer AK. Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today. 2020;25:718–30.PubMedCrossRef Alzhrani R, Alsaab HO, Petrovici A, Bhise K, Vanamala K, Sau S, Krinock MJ, Iyer AK. Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today. 2020;25:718–30.PubMedCrossRef
47.
go back to reference Pereira-Silva M, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Nanomedicine in osteosarcoma therapy: micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm. 2020;148:88–106.PubMedCrossRef Pereira-Silva M, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Nanomedicine in osteosarcoma therapy: micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm. 2020;148:88–106.PubMedCrossRef
49.
go back to reference Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics. 2020;12:802.PubMedPubMedCentralCrossRef Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics. 2020;12:802.PubMedPubMedCentralCrossRef
50.
go back to reference Xu L, Zhu Z, Sun D-W. Bioinspired nanomodification strategies: moving from chemical-based agrosystems to sustainable agriculture. ACS Nano. 2021;15:12655–86.PubMedPubMedCentralCrossRef Xu L, Zhu Z, Sun D-W. Bioinspired nanomodification strategies: moving from chemical-based agrosystems to sustainable agriculture. ACS Nano. 2021;15:12655–86.PubMedPubMedCentralCrossRef
51.
go back to reference Liu Q, Kim YJ, Im GB, Zhu J, Wu Y, Liu Y, Bhang SH. Inorganic nanoparticles applied as functional therapeutics. Adv Func Mater. 2021;31:2008171.CrossRef Liu Q, Kim YJ, Im GB, Zhu J, Wu Y, Liu Y, Bhang SH. Inorganic nanoparticles applied as functional therapeutics. Adv Func Mater. 2021;31:2008171.CrossRef
52.
go back to reference Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886.PubMedPubMedCentralCrossRef Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886.PubMedPubMedCentralCrossRef
54.
go back to reference Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S, Mayoh C, Kavallaris M, Lock RB. Development of siRNA-loaded lipid nanoparticles targeting long non-coding RNA LINC01257 as a novel and safe therapeutic approach for t (8; 21) pediatric acute myeloid leukemia. Pharmaceutics. 2021;13:1681.PubMedPubMedCentralCrossRef Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S, Mayoh C, Kavallaris M, Lock RB. Development of siRNA-loaded lipid nanoparticles targeting long non-coding RNA LINC01257 as a novel and safe therapeutic approach for t (8; 21) pediatric acute myeloid leukemia. Pharmaceutics. 2021;13:1681.PubMedPubMedCentralCrossRef
55.
go back to reference Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, Hu Q, Zhang W, Li C, Tan Y. Nanoparticles (NPs)-meditated LncRNA AFAP1-AS1 silencing to block Wnt/β-Catenin signaling pathway for synergistic reversal of radioresistance and effective cancer radiotherapy. Adv Sci. 2020;7:2000915.CrossRef Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, Hu Q, Zhang W, Li C, Tan Y. Nanoparticles (NPs)-meditated LncRNA AFAP1-AS1 silencing to block Wnt/β-Catenin signaling pathway for synergistic reversal of radioresistance and effective cancer radiotherapy. Adv Sci. 2020;7:2000915.CrossRef
56.
go back to reference Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, Sun D, Scheidt J, Qian V, He S. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem. 2019;30:907–19.PubMedPubMedCentralCrossRef Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, Sun D, Scheidt J, Qian V, He S. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem. 2019;30:907–19.PubMedPubMedCentralCrossRef
57.
go back to reference Gong N, Teng X, Li J, Liang XJ. Antisense Oligonucleotide-Conjugated Nanostructure-Targeting lncRNA MALAT1 Inhibits Cancer Metastasis. ACS Appl Mater Interfaces. 2019;11:37–42.PubMedCrossRef Gong N, Teng X, Li J, Liang XJ. Antisense Oligonucleotide-Conjugated Nanostructure-Targeting lncRNA MALAT1 Inhibits Cancer Metastasis. ACS Appl Mater Interfaces. 2019;11:37–42.PubMedCrossRef
58.
go back to reference Huang J, Lin C, Dong H, Piao Z, Jin C, Han H, Jin D. Targeting MALAT1 induces DNA damage and sensitize non-small cell lung cancer cells to cisplatin by repressing BRCA1. Cancer Chemother Pharmacol. 2020;86:663–72.PubMedCrossRef Huang J, Lin C, Dong H, Piao Z, Jin C, Han H, Jin D. Targeting MALAT1 induces DNA damage and sensitize non-small cell lung cancer cells to cisplatin by repressing BRCA1. Cancer Chemother Pharmacol. 2020;86:663–72.PubMedCrossRef
59.
go back to reference Fang K, Liu P, Dong S, Guo Y, Cui X, Zhu X, Li X, Jiang L, Liu T, Wu Y. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int J Oncol. 2016;49:509–18.PubMedPubMedCentralCrossRef Fang K, Liu P, Dong S, Guo Y, Cui X, Zhu X, Li X, Jiang L, Liu T, Wu Y. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int J Oncol. 2016;49:509–18.PubMedPubMedCentralCrossRef
60.
go back to reference Zheng R, Du M, Wang X, Xu W, Liang J, Wang W, Lv Q, Qin C, Chu H, Wang M, Yuan L, Qian J, Zhang Z. Exosome–transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer. 2018;17:143.PubMedPubMedCentralCrossRef Zheng R, Du M, Wang X, Xu W, Liang J, Wang W, Lv Q, Qin C, Chu H, Wang M, Yuan L, Qian J, Zhang Z. Exosome–transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer. 2018;17:143.PubMedPubMedCentralCrossRef
61.
go back to reference Hui B, Lu C, Wang J, Xu Y, Yang Y, Ji H, Li X, Xu L, Wang J, Tang W. Engineered exosomes for co-delivery of PGM5-AS1 and oxaliplatin to reverse drug resistance in colon cancer. J Cell Physiol. 2022;237:911–33.PubMedCrossRef Hui B, Lu C, Wang J, Xu Y, Yang Y, Ji H, Li X, Xu L, Wang J, Tang W. Engineered exosomes for co-delivery of PGM5-AS1 and oxaliplatin to reverse drug resistance in colon cancer. J Cell Physiol. 2022;237:911–33.PubMedCrossRef
62.
go back to reference Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022;8:e09394.PubMedPubMedCentralCrossRef Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022;8:e09394.PubMedPubMedCentralCrossRef
63.
go back to reference Dobreva M, Stefanov S, Andonova V. Natural lipids as structural components of solid lipid nanoparticles and nanostructured lipid carriers for topical delivery. Curr Pharm Des. 2020;26:4524–35.PubMedCrossRef Dobreva M, Stefanov S, Andonova V. Natural lipids as structural components of solid lipid nanoparticles and nanostructured lipid carriers for topical delivery. Curr Pharm Des. 2020;26:4524–35.PubMedCrossRef
64.
go back to reference Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H. Nanodelivery of nucleic acids. Nat Rev Methods Primers. 2022;2:24.PubMedPubMedCentralCrossRef Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H. Nanodelivery of nucleic acids. Nat Rev Methods Primers. 2022;2:24.PubMedPubMedCentralCrossRef
65.
66.
go back to reference Gai C, Liu C, Wu X, Yu M, Zheng J, Zhang W, Lv S, Li W. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020;11:751.PubMedPubMedCentralCrossRef Gai C, Liu C, Wu X, Yu M, Zheng J, Zhang W, Lv S, Li W. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020;11:751.PubMedPubMedCentralCrossRef
67.
go back to reference Ye H, Chu X, Cao Z, Hu X, Wang Z, Li M, Wan L, Li Y, Cao Y, Diao Z. A novel targeted therapy system for cervical cancer: co-delivery system of antisense LncRNA of MDC1 and oxaliplatin magnetic thermosensitive cationic liposome drug carrier. Int J Nanomed. 2021;16:1051–66.CrossRef Ye H, Chu X, Cao Z, Hu X, Wang Z, Li M, Wan L, Li Y, Cao Y, Diao Z. A novel targeted therapy system for cervical cancer: co-delivery system of antisense LncRNA of MDC1 and oxaliplatin magnetic thermosensitive cationic liposome drug carrier. Int J Nanomed. 2021;16:1051–66.CrossRef
68.
go back to reference Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric nanoparticles in brain cancer therapy: a review of current approaches. Polymers. 2022;14:2963.PubMedPubMedCentralCrossRef Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric nanoparticles in brain cancer therapy: a review of current approaches. Polymers. 2022;14:2963.PubMedPubMedCentralCrossRef
69.
go back to reference Ren Y, Li RQ, Cai YR, Xia T, Yang M, Xu FJ. Effective codelivery of lncRNA and pDNA by pullulan-based nanovectors for promising therapy of hepatocellular carcinoma. Adv Func Mater. 2016;26:7314–25.CrossRef Ren Y, Li RQ, Cai YR, Xia T, Yang M, Xu FJ. Effective codelivery of lncRNA and pDNA by pullulan-based nanovectors for promising therapy of hepatocellular carcinoma. Adv Func Mater. 2016;26:7314–25.CrossRef
71.
go back to reference Ferreira D, Fontinha D, Martins C, Pires D, Fernandes AR, Baptista PV. Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics. Molecules. 2020;25:3489.PubMedPubMedCentralCrossRef Ferreira D, Fontinha D, Martins C, Pires D, Fernandes AR, Baptista PV. Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics. Molecules. 2020;25:3489.PubMedPubMedCentralCrossRef
72.
go back to reference Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed. 2020;15:9823–57.CrossRef Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed. 2020;15:9823–57.CrossRef
73.
go back to reference Ding Y, Huang P-JJ, Zandieh M, Wang J, Liu J. Gold nanoparticles synthesized using various reducing agents and the effect of aging for DNA sensing. Langmuir. 2022;39:256–64.PubMedCrossRef Ding Y, Huang P-JJ, Zandieh M, Wang J, Liu J. Gold nanoparticles synthesized using various reducing agents and the effect of aging for DNA sensing. Langmuir. 2022;39:256–64.PubMedCrossRef
74.
go back to reference Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. In: Mirkin CA, editor. Spherical nucleic acids. Singapore: Jenny Stanford Publishing; 2020. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. In: Mirkin CA, editor. Spherical nucleic acids. Singapore: Jenny Stanford Publishing; 2020.
75.
go back to reference Li Y, Li F, Pan H, Huang X, Yu J, Liu X, Zhang Q, Xiao C, Zhang H, Zhang L. Targeted OUM1/PTPRZ 1 silencing and synergetic CDT/enhanced chemical therapy toward uveal melanoma based on a dual-modal imaging-guided manganese metal–organic framework nanoparticles. J Nanobiotechnol. 2022;20:472.CrossRef Li Y, Li F, Pan H, Huang X, Yu J, Liu X, Zhang Q, Xiao C, Zhang H, Zhang L. Targeted OUM1/PTPRZ 1 silencing and synergetic CDT/enhanced chemical therapy toward uveal melanoma based on a dual-modal imaging-guided manganese metal–organic framework nanoparticles. J Nanobiotechnol. 2022;20:472.CrossRef
76.
go back to reference Trinh HT, Mohanan S, Radhakrishnan D, Tiburcius S, Yang J-H, Verrills NM, Karakoti A, Vinu A. Silica-based nanomaterials as drug delivery tools for skin cancer (melanoma) treatment. Emerg Mater. 2021;4:1067–92.CrossRef Trinh HT, Mohanan S, Radhakrishnan D, Tiburcius S, Yang J-H, Verrills NM, Karakoti A, Vinu A. Silica-based nanomaterials as drug delivery tools for skin cancer (melanoma) treatment. Emerg Mater. 2021;4:1067–92.CrossRef
77.
go back to reference Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small. 2021;17:2006484.CrossRef Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small. 2021;17:2006484.CrossRef
78.
Metadata
Title
Advancements in long non-coding RNA-based therapies for cancer: targeting, delivery, and clinical implications
Authors
Muhammad Ammad
Zeeshan Javed
Haleema Sadia
Rais Ahmed
Ali Akbar
Tariq Nadeem
Daniela Calina
Javad Sharifi-Rad
Publication date
01-11-2024
Publisher
Springer US
Published in
Medical Oncology / Issue 11/2024
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-024-02534-y

Other articles of this Issue 11/2024

Medical Oncology 11/2024 Go to the issue

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Live: Wednesday 29th January, 18:00-19:30 CET

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more