Skip to main content
Top

Open Access 05-03-2025 | Acute Respiratory Distress Syndrome | RESEARCH

VASP Knockdown Ameliorates Lipopolysaccharide-Induced Acute Lung Injury with Inhibition of M1 Macrophage Polarization Through the cGMP-PKG Signaling Pathway

Authors: Jiajia Tang, Yiwei Ding, Wei Chen, Jun Shi, Chunyang Zhang, Xiaoyu Zhao, Jiao Li, Zhihai Han, Xuxin Chen

Published in: Inflammation

Login to get access

Abstract

Alveolar macrophage (AM) polarization plays a pivotal role in the inflammatory response during acute lung injury (ALI). As reported previously, vasodilator-stimulated phosphoprotein (VASP) may function as an anti-inflammatory agent in hepatic tissues. However, the specific role of VASP in ALI-induced macrophage polarization remains unclear. To elucidate the role of VASP in ALI, we established a lipopolysaccharide (LPS)-induced M1 polarization model of MH-S cells. RNA sequencing was performed to identify differentially expressed genes during macrophage polarization. The results revealed significant upregulation of the VASP gene. Subsequently, VASP gene knockdown in the lungs was achieved by intratracheal delivery of VASP-AAV6, and the resulting ALI symptoms and macrophage polarization were assessed. The VASP gene was also knocked down in MH-S cells; these cells were then stimulated with LPS for 24 h, and polarization-related markers of macrophages were analyzed. Finally, to validate the involvement of the PKG-VASP signaling pathway, experiments were conducted with a PKG agonist (8-Br-cGMP) and inhibitor (KT5823), and the effects of modulating the PKG-VASP pathway on macrophage polarization were investigated. VASP knockdown notably ameliorated ALI symptoms in these mice with LPS-induced ALI. Additionally, in vitro experiments showed that the PKG-VASP signaling pathway plays a pivotal role in macrophage polarization. VASP knockdown protected mice from LPS-induced ALI by inhibiting M1 polarization, and its protective effects were partially mediated by the cGMP-PKG signaling pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sun, X., H. Xiang, Z. Liu, H. Xiao, X. Li, W. Gong, et al. 2024. Jingfang Granules () alleviates bleomycin-induced acute lung injury through regulating PI3K/Akt/mTOR signaling pathway. Journal of Ethnopharmacology 318: 116946.CrossRefPubMed Sun, X., H. Xiang, Z. Liu, H. Xiao, X. Li, W. Gong, et al. 2024. Jingfang Granules () alleviates bleomycin-induced acute lung injury through regulating PI3K/Akt/mTOR signaling pathway. Journal of Ethnopharmacology 318: 116946.CrossRefPubMed
2.
go back to reference Levitt, J.E., C.S. Calfee, B.A. Goldstein, R. Vojnik, and M.A. Matthay. 2013. Early acute lung injury: Criteria for identifying lung injury prior to the need for positive pressure ventilation*. Critical Care Medicine 41: 1929–1937.CrossRefPubMed Levitt, J.E., C.S. Calfee, B.A. Goldstein, R. Vojnik, and M.A. Matthay. 2013. Early acute lung injury: Criteria for identifying lung injury prior to the need for positive pressure ventilation*. Critical Care Medicine 41: 1929–1937.CrossRefPubMed
3.
go back to reference Wang, M., D. Wu, X. Liao, H. Hu, J. Gao, L. Meng, et al. 2024. CPT1A-IL-10-mediated macrophage metabolic and phenotypic alterations ameliorate acute lung injury. Clinical and Translational Medicine 14: e1785.CrossRefPubMedPubMedCentral Wang, M., D. Wu, X. Liao, H. Hu, J. Gao, L. Meng, et al. 2024. CPT1A-IL-10-mediated macrophage metabolic and phenotypic alterations ameliorate acute lung injury. Clinical and Translational Medicine 14: e1785.CrossRefPubMedPubMedCentral
4.
go back to reference Ling, X., S. Wei, D. Ling, S. Cao, R. Chang, Q. Wang, et al. 2023. Irf7 regulates the expression of Srg3 and ferroptosis axis aggravated sepsis-induced acute lung injury. Cellular and Molecular Biology Letters 28: 91.CrossRefPubMedPubMedCentral Ling, X., S. Wei, D. Ling, S. Cao, R. Chang, Q. Wang, et al. 2023. Irf7 regulates the expression of Srg3 and ferroptosis axis aggravated sepsis-induced acute lung injury. Cellular and Molecular Biology Letters 28: 91.CrossRefPubMedPubMedCentral
5.
go back to reference Hu, Q., C.J. Lyon, J.K. Fletcher, W. Tang, M. Wan, and T.Y. Hu. 2021. Extracellular vesicle activities regulating macrophage-and tissue-mediated injury and repair responses. Acta Pharmaceutica Sinica B 11 (6): 1493–1512.CrossRefPubMed Hu, Q., C.J. Lyon, J.K. Fletcher, W. Tang, M. Wan, and T.Y. Hu. 2021. Extracellular vesicle activities regulating macrophage-and tissue-mediated injury and repair responses. Acta Pharmaceutica Sinica B 11 (6): 1493–1512.CrossRefPubMed
6.
go back to reference Dang, W., Y. Tao, X. Xu, H. Zhao, L. Zou, and Y. Li. 2022. The role of lung macrophages in acute respiratory distress syndrome. Inflammation Research 71: 1417–1432.CrossRefPubMedPubMedCentral Dang, W., Y. Tao, X. Xu, H. Zhao, L. Zou, and Y. Li. 2022. The role of lung macrophages in acute respiratory distress syndrome. Inflammation Research 71: 1417–1432.CrossRefPubMedPubMedCentral
7.
go back to reference Liu, C., K. Xiao, and L. Xie. 2022. Advances in the Regulation of Macrophage Polarization by Mesenchymal Stem Cells and Implications for ALI/ARDS Treatment. Frontiers in Immunology 13: 928134.CrossRefPubMedPubMedCentral Liu, C., K. Xiao, and L. Xie. 2022. Advances in the Regulation of Macrophage Polarization by Mesenchymal Stem Cells and Implications for ALI/ARDS Treatment. Frontiers in Immunology 13: 928134.CrossRefPubMedPubMedCentral
8.
go back to reference Liang, L., W. Xu, A. Shen, X. Fu, H. Cen, S. Wang, et al. 2020. Inhibition ofYAP1 activity ameliorates acute lung injury through promotion ofM2 macrophage polarization. MedComm 2023 (4): e293. Liang, L., W. Xu, A. Shen, X. Fu, H. Cen, S. Wang, et al. 2020. Inhibition ofYAP1 activity ameliorates acute lung injury through promotion ofM2 macrophage polarization. MedComm 2023 (4): e293.
9.
go back to reference Guan, T., X. Zhou, W. Zhou, and H. Lin. 2023. Regulatory T cell and macrophage crosstalk in acute lung injury: future perspectives. Cell Death Discovery 9 (1): 9.CrossRefPubMedPubMedCentral Guan, T., X. Zhou, W. Zhou, and H. Lin. 2023. Regulatory T cell and macrophage crosstalk in acute lung injury: future perspectives. Cell Death Discovery 9 (1): 9.CrossRefPubMedPubMedCentral
10.
11.
go back to reference Gong, C., J. Ma, Y. Deng, Q. Liu, Z. Zhan, H. Gan, et al. 2024. S100A9(-/-) alleviates LPS-induced acute lung injury by regulating M1 macrophage polarization and inhibiting pyroptosis via the TLR4/MyD88/NFκB signaling axis. Biomedicine and Pharmacotherapy 172: 116233.CrossRefPubMed Gong, C., J. Ma, Y. Deng, Q. Liu, Z. Zhan, H. Gan, et al. 2024. S100A9(-/-) alleviates LPS-induced acute lung injury by regulating M1 macrophage polarization and inhibiting pyroptosis via the TLR4/MyD88/NFκB signaling axis. Biomedicine and Pharmacotherapy 172: 116233.CrossRefPubMed
12.
13.
go back to reference Faix, J., and K. Rottner. 2022. Ena/VASP proteins in cell edge protrusion, migration and adhesion. Journal of Cell Science 135 (6): jcs259226.CrossRefPubMed Faix, J., and K. Rottner. 2022. Ena/VASP proteins in cell edge protrusion, migration and adhesion. Journal of Cell Science 135 (6): jcs259226.CrossRefPubMed
14.
go back to reference Kang, Y.M., F. Kim, and W.J. Lee. 2017. Role of NO/VASP Signaling Pathway against Obesity-Related Inflammation and Insulin Resistance. Diabetes and Metabolism Journal 41: 89–95.CrossRefPubMed Kang, Y.M., F. Kim, and W.J. Lee. 2017. Role of NO/VASP Signaling Pathway against Obesity-Related Inflammation and Insulin Resistance. Diabetes and Metabolism Journal 41: 89–95.CrossRefPubMed
15.
go back to reference Cheng, A.M., N. Rizzo-DeLeon, C.L. Wilson, W.J. Lee, S. Tateya, A.W. Clowes, et al. 2014. Vasodilator-stimulated phosphoprotein protects against vascular inflammation and insulin resistance. American journal of physiology. Endocrinology and metabolism 307: E571-579.CrossRefPubMedPubMedCentral Cheng, A.M., N. Rizzo-DeLeon, C.L. Wilson, W.J. Lee, S. Tateya, A.W. Clowes, et al. 2014. Vasodilator-stimulated phosphoprotein protects against vascular inflammation and insulin resistance. American journal of physiology. Endocrinology and metabolism 307: E571-579.CrossRefPubMedPubMedCentral
16.
go back to reference Du, X., C. Chen, M. Zhang, D. Cai, J. Sun, J. Yang, et al. 2015. Scutellarin reduces endothelium dysfunction through the PKG-I pathway. Evidence‐Based Complementary and Alternative Medicine 2015: 430271.CrossRefPubMedPubMedCentral Du, X., C. Chen, M. Zhang, D. Cai, J. Sun, J. Yang, et al. 2015. Scutellarin reduces endothelium dysfunction through the PKG-I pathway. Evidence‐Based Complementary and Alternative Medicine 2015: 430271.CrossRefPubMedPubMedCentral
17.
go back to reference Morone, P.J., W. Yan, J. Adcock, P. Komalavilas, J. Mocco, R.C. Thompson, et al. 2021. Vasorelaxing cell permeant phosphopeptide mimetics for subarachnoid hemorrhage. European Journal of Pharmacology 900: 174038.CrossRefPubMedPubMedCentral Morone, P.J., W. Yan, J. Adcock, P. Komalavilas, J. Mocco, R.C. Thompson, et al. 2021. Vasorelaxing cell permeant phosphopeptide mimetics for subarachnoid hemorrhage. European Journal of Pharmacology 900: 174038.CrossRefPubMedPubMedCentral
18.
go back to reference Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, et al. 2013. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91(phox) to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 33: 18–41.CrossRefPubMed Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, et al. 2013. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91(phox) to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 33: 18–41.CrossRefPubMed
19.
go back to reference Russo, I., P. Del Mese, M. Viretto, G. Doronzo, L. Mattiello, M. Trovati, et al. 2008. Sodium azide, a bacteriostatic preservative contained in commercially available laboratory reagents, influences the responses of human platelets via the cGMP/PKG/VASP pathway. Clinical Biochemistry 41: 343–349.CrossRefPubMed Russo, I., P. Del Mese, M. Viretto, G. Doronzo, L. Mattiello, M. Trovati, et al. 2008. Sodium azide, a bacteriostatic preservative contained in commercially available laboratory reagents, influences the responses of human platelets via the cGMP/PKG/VASP pathway. Clinical Biochemistry 41: 343–349.CrossRefPubMed
20.
go back to reference Lee, W.J., S. Tateya, A.M. Cheng, N. Rizzo-DeLeon, N.F. Wang, P. Handa, et al. 2015. M2 Macrophage Polarization Mediates Anti-inflammatory Effects of Endothelial Nitric Oxide Signaling. Diabetes 64: 2836–2846.CrossRefPubMedPubMedCentral Lee, W.J., S. Tateya, A.M. Cheng, N. Rizzo-DeLeon, N.F. Wang, P. Handa, et al. 2015. M2 Macrophage Polarization Mediates Anti-inflammatory Effects of Endothelial Nitric Oxide Signaling. Diabetes 64: 2836–2846.CrossRefPubMedPubMedCentral
21.
go back to reference Tateya, S., N.O. Rizzo, P. Handa, A.M. Cheng, V. Morgan-Stevenson, G. Daum, et al. 2011. Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high-fat feeding. Diabetes 60: 2792–2801.CrossRefPubMedPubMedCentral Tateya, S., N.O. Rizzo, P. Handa, A.M. Cheng, V. Morgan-Stevenson, G. Daum, et al. 2011. Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high-fat feeding. Diabetes 60: 2792–2801.CrossRefPubMedPubMedCentral
22.
go back to reference He, H., W. Yang, N. Su, C. Zhang, J. Dai, F. Han, et al. 2023. Activating NO-sGC crosstalk in the mouse vascular niche promotes vascular integrity and mitigates acute lung injury. Journal of Experimental Medicine 220: e20211422.CrossRefPubMed He, H., W. Yang, N. Su, C. Zhang, J. Dai, F. Han, et al. 2023. Activating NO-sGC crosstalk in the mouse vascular niche promotes vascular integrity and mitigates acute lung injury. Journal of Experimental Medicine 220: e20211422.CrossRefPubMed
23.
go back to reference Henes, J., M.A. Schmit, J.C. Morote-Garcia, V. Mirakaj, D. Köhler, L. Glover, et al. 2009. Inflammation-associated repression of vasodilator-stimulated phosphoprotein (VASP) reduces alveolar-capillary barrier function during acute lung injury. The FASEB Journal 23: 4244–4255.CrossRefPubMedPubMedCentral Henes, J., M.A. Schmit, J.C. Morote-Garcia, V. Mirakaj, D. Köhler, L. Glover, et al. 2009. Inflammation-associated repression of vasodilator-stimulated phosphoprotein (VASP) reduces alveolar-capillary barrier function during acute lung injury. The FASEB Journal 23: 4244–4255.CrossRefPubMedPubMedCentral
24.
go back to reference Flores-Costa, R., M. Duran-Güell, M. Casulleras, C. López-Vicario, J. Alcaraz-Quiles, A. Diaz, et al. 2020. Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit. Proceedings of the National Academy of Sciences 117: 28263–28274.CrossRef Flores-Costa, R., M. Duran-Güell, M. Casulleras, C. López-Vicario, J. Alcaraz-Quiles, A. Diaz, et al. 2020. Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit. Proceedings of the National Academy of Sciences 117: 28263–28274.CrossRef
25.
go back to reference Benz, P.M., T. Frömel, H. Laban, J. Zink, L. Ulrich, D. Groneberg, et al. 2023. Cardiovascular functions of Ena/VASP proteins: Past, present and beyond. Cells. 12 (13): 1740.CrossRefPubMedPubMedCentral Benz, P.M., T. Frömel, H. Laban, J. Zink, L. Ulrich, D. Groneberg, et al. 2023. Cardiovascular functions of Ena/VASP proteins: Past, present and beyond. Cells. 12 (13): 1740.CrossRefPubMedPubMedCentral
26.
go back to reference Kwiatkowski, A.V., F.B. Gertler, and J.J. Loureiro. 2003. Function and regulation of Ena/VASP proteins. Trends in Cell Biology 13: 386–392.CrossRefPubMed Kwiatkowski, A.V., F.B. Gertler, and J.J. Loureiro. 2003. Function and regulation of Ena/VASP proteins. Trends in Cell Biology 13: 386–392.CrossRefPubMed
27.
go back to reference Liao, K., D.Y. Lv, H.L. Yu, H. Chen, and S.X. Luo. 2021. iNOS regulates activation of the NLRP3 inflammasome through the sGC/cGMP/PKG/TACE/TNF-α axis in response to cigarette smoke resulting in aortic endothelial pyroptosis and vascular dysfunction. International Immunopharmacology 101: 108334.CrossRefPubMed Liao, K., D.Y. Lv, H.L. Yu, H. Chen, and S.X. Luo. 2021. iNOS regulates activation of the NLRP3 inflammasome through the sGC/cGMP/PKG/TACE/TNF-α axis in response to cigarette smoke resulting in aortic endothelial pyroptosis and vascular dysfunction. International Immunopharmacology 101: 108334.CrossRefPubMed
28.
go back to reference de la Fuente-Alonso, A., M. Toral, A. Alfayate, M.J. Ruiz-Rodríguez, E. Bonzón-Kulichenko, G. Teixido-Tura, et al. 2021. Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nature Communications 12: 2628.CrossRefPubMedPubMedCentral de la Fuente-Alonso, A., M. Toral, A. Alfayate, M.J. Ruiz-Rodríguez, E. Bonzón-Kulichenko, G. Teixido-Tura, et al. 2021. Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nature Communications 12: 2628.CrossRefPubMedPubMedCentral
29.
go back to reference Luo, M., F. Zhao, H. Cheng, M. Su, and Y. Wang. 2024. Macrophage polarization: An important role in inflammatory diseases. Frontiers in Immunology 15: 1352946.CrossRefPubMedPubMedCentral Luo, M., F. Zhao, H. Cheng, M. Su, and Y. Wang. 2024. Macrophage polarization: An important role in inflammatory diseases. Frontiers in Immunology 15: 1352946.CrossRefPubMedPubMedCentral
30.
go back to reference Zheng, X., Q. Jiang, M. Han, F. Ye, M. Wang, Y. Qiu, et al. 2023. FBXO38 regulates macrophage polarization to control the development of cancer and colitis. Cellular and Molecular Immunology 20: 1367–1378.CrossRefPubMedPubMedCentral Zheng, X., Q. Jiang, M. Han, F. Ye, M. Wang, Y. Qiu, et al. 2023. FBXO38 regulates macrophage polarization to control the development of cancer and colitis. Cellular and Molecular Immunology 20: 1367–1378.CrossRefPubMedPubMedCentral
31.
go back to reference Fan, L., L. Yao, Z. Li, Z. Wan, W. Sun, S. Qiu, et al. 2023. Exosome-based mitochondrial delivery of circRNA mSCAR alleviates sepsis by orchestrating macrophage activation. Advanced Science (Weinh). 10: e2205692.CrossRef Fan, L., L. Yao, Z. Li, Z. Wan, W. Sun, S. Qiu, et al. 2023. Exosome-based mitochondrial delivery of circRNA mSCAR alleviates sepsis by orchestrating macrophage activation. Advanced Science (Weinh). 10: e2205692.CrossRef
32.
go back to reference Li, B., C. Xia, W. He, J. Liu, R. Duan, Z. Ji, et al. 2024. The Thyroid Hormone Analog GC-1 Mitigates Acute Lung Injury by Inhibiting M1 Macrophage Polarization. Adv Sci (Weinh). 11: e2401931.CrossRefPubMed Li, B., C. Xia, W. He, J. Liu, R. Duan, Z. Ji, et al. 2024. The Thyroid Hormone Analog GC-1 Mitigates Acute Lung Injury by Inhibiting M1 Macrophage Polarization. Adv Sci (Weinh). 11: e2401931.CrossRefPubMed
Metadata
Title
VASP Knockdown Ameliorates Lipopolysaccharide-Induced Acute Lung Injury with Inhibition of M1 Macrophage Polarization Through the cGMP-PKG Signaling Pathway
Authors
Jiajia Tang
Yiwei Ding
Wei Chen
Jun Shi
Chunyang Zhang
Xiaoyu Zhao
Jiao Li
Zhihai Han
Xuxin Chen
Publication date
05-03-2025
Publisher
Springer US
Published in
Inflammation
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-025-02277-6

Keynote webinar | Spotlight on advances in lupus

  • Live
  • Webinar | 27-05-2025 | 18:00 (CEST)

Systemic lupus erythematosus is a severe autoimmune disease that can cause damage to almost every system of the body. Join this session to learn more about novel biomarkers for diagnosis and monitoring and familiarise yourself with current and emerging targeted therapies.

Join us live: Tuesday 27th May, 18:00-19:15 (CEST)

Prof. Edward Vital
Prof. Ronald F. van Vollenhoven
Developed by: Springer Medicine
Register now
Webinar

Elevate your expertise in aplastic anemia (Link opens in a new window)

Transform the way you care for your patients with aplastic anemia with our 3-module series using real-world case studies and expert insights. Discover why early diagnosis matters, explore the benefits and risks of current treatments, and develop tailored approaches for complex cases. 

Supported by:
  • Pfizer
Developed by: Springer Healthcare IME
Learn more