Skip to main content
Top

28-09-2024 | Acute Pulmonary Embolism

Prediction of short-term adverse clinical outcomes of acute pulmonary embolism using conventional machine learning and deep Learning based on CTPA images

Authors: Dawei Wang, Rong Chen, Wenjiang Wang, Yue Yang, Yaxi Yu, Lan Liu, Fei Yang, Shujun Cui

Published in: Journal of Thrombosis and Thrombolysis

Login to get access

Abstract

To explore the predictive value of traditional machine learning (ML) and deep learning (DL) algorithms based on computed tomography pulmonary angiography (CTPA) images for short-term adverse outcomes in patients with acute pulmonary embolism (APE). This retrospective study enrolled 132 patients with APE confirmed by CTPA. Thrombus segmentation and texture feature extraction was performed using 3D-Slicer software. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature dimensionality reduction and selection, with optimal λ values determined using leave-one-fold cross-validation to identify texture features with non-zero coefficients. ML models (logistic regression, random forest, decision tree, support vector machine) and DL models (ResNet 50 and Vgg 19) were used to construct the prediction models. Model performance was evaluated using receiver operating characteristic (ROC) curves and the area under the curve (AUC). The cohort included 84 patients in the good prognosis group and 48 patients in the poor prognosis group. Univariate and multivariate logistic regression analyses showed that diabetes, RV/LV ≥ 1.0, and Qanadli index form independent risk factors predicting poor prognosis in patients with APE(P < 0.05). A total of 750 texture features were extracted, with 4 key features identified through screening. There was a weak positive correlation between texture features and clinical parameters. ROC curves analysis demonstrated AUC values of 0.85 (0.78–0.92), 0.76 (0.67–0.84), and 0.89 (0.83–0.95) for the clinical, texture feature, and combined models, respectively. In the ML models, the random forest model achieved the highest AUC (0.85), and the support vector machine model achieved the lowest AUC (0.62). And the AUCs for the DL models (ResNet 50 and Vgg 19) were 0.91 (95%CI: 0.90–0.92) and 0.94(95%CI: 0.93–0.95), respectively. Vgg 19 model demonstrated exceptional precision (0.93), recall (0.76), specificity (0.95) and F1 score (0.84). Both ML and DL models based on thrombus texture features from CTPA images demonstrated higher predictive efficacy for short-term adverse outcomes in patients with APE, especially the random forest and Vgg 19 models, potentially assisting clinical management in timely interventions to improve patient prognosis.
Literature
13.
go back to reference Konstantinides SV, Meyer G, Becattini C et al (2019) 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J 54:1901647. https://doi.org/10.1183/13993003.01647-2019CrossRefPubMed Konstantinides SV, Meyer G, Becattini C et al (2019) 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J 54:1901647. https://​doi.​org/​10.​1183/​13993003.​01647-2019CrossRefPubMed
Metadata
Title
Prediction of short-term adverse clinical outcomes of acute pulmonary embolism using conventional machine learning and deep Learning based on CTPA images
Authors
Dawei Wang
Rong Chen
Wenjiang Wang
Yue Yang
Yaxi Yu
Lan Liu
Fei Yang
Shujun Cui
Publication date
28-09-2024
Publisher
Springer US
Published in
Journal of Thrombosis and Thrombolysis
Print ISSN: 0929-5305
Electronic ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-024-03044-4

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more