Skip to main content
Top

03-09-2024 | Acute Myeloid Leukemia | Progress in Hematology

Advances in pathogenesis research and challenges in treatment development for acute myeloid leukemia

Author: Hiroki Yamaguchi

Published in: International Journal of Hematology

Login to get access

Abstract

Acute myeloid leukemia (AML) develops when hematopoietic stem cells acquire chromosomal and genetic abnormalities, transforming into leukemia stem cells (LSCs) and further gaining driver mutations. Advances in genomic analysis have identified numerous new gene mutations involved in AML development. Recent research has shown that individuals with germline mutations in genes like DDX41 and CEBPA develop AML upon acquiring additional somatic mutations, and the latest WHO classification separates AML with such mutations into distinct disease groups. LSCs are regulated by different metabolic processes than normal stem cells, contributing to drug resistance and relapse. LSCs rely on oxidative phosphorylation (OXPHOS) metabolism for energy production, and venetoclax inhibits this process, affecting LSCs. Resistant LSCs show enhanced glycolysis, which suggests that targeting both OXPHOS and glycolysis is crucial. While targeted therapies like FLT3, BCL-2, and IDH inhibitors have shown efficacy, resistance remains an issue, highlighting the need for new treatment strategies. CAR-T cell therapy is an emerging immunotherapy that shows particular promise for targeting CD123 and CLL-1, with acceptable toxicity. Future developments in CAR-T cell therapy and other immunotherapies are anticipated to improve AML treatment outcomes.
Literature
1.
go back to reference Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.CrossRefPubMed Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.CrossRefPubMed
2.
go back to reference Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.CrossRefPubMed Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.CrossRefPubMed
3.
go back to reference Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547(7661):104–8.CrossRefPubMed Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547(7661):104–8.CrossRefPubMed
4.
go back to reference Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525(7570):538–42.CrossRefPubMedPubMedCentral Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525(7570):538–42.CrossRefPubMedPubMedCentral
5.
go back to reference Yamaguchi H. Significance of gene diagnosis in acute myeloid leukemia with the emergence of new molecular target drug treatment. J Nippon Med Sch. 2022;89(5):470–8.CrossRefPubMed Yamaguchi H. Significance of gene diagnosis in acute myeloid leukemia with the emergence of new molecular target drug treatment. J Nippon Med Sch. 2022;89(5):470–8.CrossRefPubMed
6.
go back to reference Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345–77.CrossRefPubMed Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345–77.CrossRefPubMed
7.
go back to reference Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.CrossRefPubMedPubMedCentral Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.CrossRefPubMedPubMedCentral
8.
go back to reference Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8.CrossRefPubMedPubMedCentral Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8.CrossRefPubMedPubMedCentral
9.
go back to reference Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.CrossRefPubMedPubMedCentral Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.CrossRefPubMedPubMedCentral
10.
go back to reference Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.CrossRefPubMedPubMedCentral Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.CrossRefPubMedPubMedCentral
11.
go back to reference Bougeard G, Renaux-Petel M, Flaman J-M, Charbonnier C, Fermey P, Belotti M, et al. Revisiting Li-fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33:2345–52.CrossRefPubMed Bougeard G, Renaux-Petel M, Flaman J-M, Charbonnier C, Fermey P, Belotti M, et al. Revisiting Li-fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33:2345–52.CrossRefPubMed
12.
go back to reference Homan CC, Drazer MW, Yu K, Lawrence DM, Feng J, Arriola-Martinez L, et al. Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in RUNX1, GATA2, and DDX41. Blood Adv. 2023;7:6092–107.CrossRefPubMedPubMedCentral Homan CC, Drazer MW, Yu K, Lawrence DM, Feng J, Arriola-Martinez L, et al. Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in RUNX1, GATA2, and DDX41. Blood Adv. 2023;7:6092–107.CrossRefPubMedPubMedCentral
13.
go back to reference Makishima H, Saiki R, Nannya Y, Korotev S, Gurnari C, Takeda J, et al. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. Blood. 2023;141:534–49.CrossRefPubMed Makishima H, Saiki R, Nannya Y, Korotev S, Gurnari C, Takeda J, et al. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. Blood. 2023;141:534–49.CrossRefPubMed
14.
go back to reference Nishii R, Baskin-Doerfler R, Yang W, Oak N, Zhao X, Yang W, et al. Molecular basis of ETV6-mediated predisposition to childhood acute lymphoblastic leukemia. Blood. 2021;137:364–73.CrossRefPubMedPubMedCentral Nishii R, Baskin-Doerfler R, Yang W, Oak N, Zhao X, Yang W, et al. Molecular basis of ETV6-mediated predisposition to childhood acute lymphoblastic leukemia. Blood. 2021;137:364–73.CrossRefPubMedPubMedCentral
15.
go back to reference Noris P, Favier R, Alessi M-C, Geddis AE, Kunishima S, Heller PG, et al. ANKRD26 related thrombocytopenia and myeloid malignancies. Blood. 2013;122:1987–9.CrossRefPubMed Noris P, Favier R, Alessi M-C, Geddis AE, Kunishima S, Heller PG, et al. ANKRD26 related thrombocytopenia and myeloid malignancies. Blood. 2013;122:1987–9.CrossRefPubMed
16.
go back to reference Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329–41.CrossRefPubMedPubMedCentral Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329–41.CrossRefPubMedPubMedCentral
17.
go back to reference Jones CL, Stevens BM, Pollyea DA, Culp-Hill R, Reisz JA, Nemkov T, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells. Cell Stem Cell. 2020;27(5):748–64.CrossRefPubMedPubMedCentral Jones CL, Stevens BM, Pollyea DA, Culp-Hill R, Reisz JA, Nemkov T, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells. Cell Stem Cell. 2020;27(5):748–64.CrossRefPubMedPubMedCentral
18.
go back to reference Song K, Li M, Xu X, Xuan LI, Huang G, Liu Q. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncol Lett. 2016;12(1):334–42.CrossRefPubMedPubMedCentral Song K, Li M, Xu X, Xuan LI, Huang G, Liu Q. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncol Lett. 2016;12(1):334–42.CrossRefPubMedPubMedCentral
19.
go back to reference Alotaibi AS, Yilmaz M, Kanagal-Shamanna R, Loghavi S, Kadia TM, DiNardo CD, et al. Patterns of resistance differ in patients with acute myeloid leukemia treated with type I versus type II FLT3 inhibitors. Blood Cancer Discov. 2021;2(2):125–34.CrossRefPubMed Alotaibi AS, Yilmaz M, Kanagal-Shamanna R, Loghavi S, Kadia TM, DiNardo CD, et al. Patterns of resistance differ in patients with acute myeloid leukemia treated with type I versus type II FLT3 inhibitors. Blood Cancer Discov. 2021;2(2):125–34.CrossRefPubMed
20.
go back to reference Intlekofer AM, Shih AH, Wang B, Nazir A, Rustenburg AS, Albanese SK, et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature. 2018;559(7712):125–9.CrossRefPubMedPubMedCentral Intlekofer AM, Shih AH, Wang B, Nazir A, Rustenburg AS, Albanese SK, et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature. 2018;559(7712):125–9.CrossRefPubMedPubMedCentral
21.
go back to reference DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, Brown FC, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135(11):791–803.CrossRefPubMedPubMedCentral DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, Brown FC, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135(11):791–803.CrossRefPubMedPubMedCentral
22.
go back to reference Moujalled DM, Brown FC, Chua CC, Dengler MA, Pomilio G, Anstee NS, et al. Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia. Blood. 2023;141(6):634–44.CrossRefPubMed Moujalled DM, Brown FC, Chua CC, Dengler MA, Pomilio G, Anstee NS, et al. Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia. Blood. 2023;141(6):634–44.CrossRefPubMed
23.
go back to reference Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.CrossRefPubMedPubMedCentral Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.CrossRefPubMedPubMedCentral
25.
go back to reference Zhang X, Lv H, Xiao X, Bai X, Liu P, Pu Y, et al. A phase I clinical trial of CLL-1 CAR-T cells for the treatment of relapsed/refractory acute myeloid leukemia in adults. Blood. 2023;142:2106.CrossRef Zhang X, Lv H, Xiao X, Bai X, Liu P, Pu Y, et al. A phase I clinical trial of CLL-1 CAR-T cells for the treatment of relapsed/refractory acute myeloid leukemia in adults. Blood. 2023;142:2106.CrossRef
26.
go back to reference Wermke M, Metzelder S, Kraus S, Sala E, Vucinic V, Fiedler W, et al. Updated results from a phase I dose escalation study of the rapidly-switchable universal CAR-T therapy UniCAR-T-CD123 in relapsed/refractory AML. Blood. 2023;142(1):3465.CrossRef Wermke M, Metzelder S, Kraus S, Sala E, Vucinic V, Fiedler W, et al. Updated results from a phase I dose escalation study of the rapidly-switchable universal CAR-T therapy UniCAR-T-CD123 in relapsed/refractory AML. Blood. 2023;142(1):3465.CrossRef
Metadata
Title
Advances in pathogenesis research and challenges in treatment development for acute myeloid leukemia
Author
Hiroki Yamaguchi
Publication date
03-09-2024
Publisher
Springer Nature Singapore
Published in
International Journal of Hematology
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-024-03837-6