Skip to main content
Top

04-05-2024 | Acute Kidney Injury | Review

The mechanisms of ferroptosis in the pathogenesis of kidney diseases

Authors: Jia Liu, Jianheng Chen, Jie Lv, Yuhang Gong, Jie Song

Published in: Journal of Nephrology

Login to get access

Abstract

The pathological features of acute and chronic kidney diseases are closely associated with cell death in glomeruli and tubules. Ferroptosis is a form of programmed cell death characterized by iron overload-induced oxidative stress. Ferroptosis has recently gained increasing attention as a pathogenic mechanism of kidney damage. Specifically, the ferroptosis signaling pathway has been found to be involved in the pathological process of acute and chronic kidney injury, potentially contributing to the development of both acute and chronic kidney diseases. This paper aims to elucidate the underlying mechanisms of ferroptosis and its role in the pathogenesis of kidney disease, highlighting its significance and proposing novel directions for its treatment.
Literature
1.
go back to reference Kurzhagen J, Dellepiane S, Cantaluppi V, Rabb H (2020) AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 33(6):1171–1187PubMedCrossRef Kurzhagen J, Dellepiane S, Cantaluppi V, Rabb H (2020) AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 33(6):1171–1187PubMedCrossRef
2.
go back to reference Belavgeni A, Meyer C, Stumpf J, Hugo C, Linkermann A (2020) Ferroptosis and necroptosis in the kidney. Cell Chem Biol 27(4):448–462PubMedCrossRef Belavgeni A, Meyer C, Stumpf J, Hugo C, Linkermann A (2020) Ferroptosis and necroptosis in the kidney. Cell Chem Biol 27(4):448–462PubMedCrossRef
4.
go back to reference Li S, Zheng L, Zhang J, Liu X, Wu Z (2021) Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radical Biol Med 162:435–449CrossRef Li S, Zheng L, Zhang J, Liu X, Wu Z (2021) Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radical Biol Med 162:435–449CrossRef
5.
go back to reference Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91(13):1138–1146PubMedCrossRef Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91(13):1138–1146PubMedCrossRef
6.
go back to reference Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296PubMedCrossRef Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296PubMedCrossRef
7.
go back to reference Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab 8(3):237–248PubMedCrossRef Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab 8(3):237–248PubMedCrossRef
8.
go back to reference Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245PubMedPubMedCentralCrossRef Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245PubMedPubMedCentralCrossRef
9.
go back to reference Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072PubMedPubMedCentralCrossRef Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072PubMedPubMedCentralCrossRef
10.
go back to reference Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556PubMedPubMedCentralCrossRef Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556PubMedPubMedCentralCrossRef
12.
go back to reference Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, St Croix C et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90PubMedCrossRef Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, St Croix C et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90PubMedCrossRef
13.
go back to reference Latunde-Dada GO (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta (BBA) Gen Subj 1861(8):1893–1900CrossRef Latunde-Dada GO (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta (BBA) Gen Subj 1861(8):1893–1900CrossRef
15.
go back to reference Li Y, Xiu W, Yang K, Wen Q, Yuwen L, Luo Z et al (2021) A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Mater Horiz 8(4):1264–1271PubMedCrossRef Li Y, Xiu W, Yang K, Wen Q, Yuwen L, Luo Z et al (2021) A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Mater Horiz 8(4):1264–1271PubMedCrossRef
16.
go back to reference Zhu W, Fang T, Zhang W, Liang A, Zhang H, Zhang Z-P et al (2021) A ROS scavenging protein nanocage for in vitro and in vivo antioxidant treatment. Nanoscale 13(8):4634–4643PubMedCrossRef Zhu W, Fang T, Zhang W, Liang A, Zhang H, Zhang Z-P et al (2021) A ROS scavenging protein nanocage for in vitro and in vivo antioxidant treatment. Nanoscale 13(8):4634–4643PubMedCrossRef
17.
go back to reference Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D (2021) SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett 522:211–224PubMedCrossRef Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D (2021) SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett 522:211–224PubMedCrossRef
18.
go back to reference Homma T, Kobayashi S, Fujii J (2020) Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs). Free Radic Res 54(6):397–407PubMedCrossRef Homma T, Kobayashi S, Fujii J (2020) Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs). Free Radic Res 54(6):397–407PubMedCrossRef
19.
go back to reference Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H et al (2020) Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 483:127–136PubMedCrossRef Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H et al (2020) Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 483:127–136PubMedCrossRef
20.
go back to reference Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081PubMedCrossRef Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081PubMedCrossRef
21.
go back to reference Sha W, Hu F, Xi Y, Chu Y, Bu S (2021) Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res 2021:1–10CrossRef Sha W, Hu F, Xi Y, Chu Y, Bu S (2021) Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res 2021:1–10CrossRef
22.
go back to reference Lane DJ, Metselaar B, Greenough M, Bush AI, Ayton SJ (2021) Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer’s disease. Essays Biochem 65(7):925–940PubMedCrossRef Lane DJ, Metselaar B, Greenough M, Bush AI, Ayton SJ (2021) Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer’s disease. Essays Biochem 65(7):925–940PubMedCrossRef
23.
go back to reference Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y et al (2022) ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 51:102262PubMedPubMedCentralCrossRef Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y et al (2022) ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 51:102262PubMedPubMedCentralCrossRef
24.
go back to reference Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D et al (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299PubMedPubMedCentralCrossRef Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D et al (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299PubMedPubMedCentralCrossRef
25.
go back to reference Hu Q, Zhang Y, Lou H, Ou Z, Liu J, Duan W et al (2021) GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis 12(7):1–9CrossRef Hu Q, Zhang Y, Lou H, Ou Z, Liu J, Duan W et al (2021) GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis 12(7):1–9CrossRef
26.
go back to reference Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ et al (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 22(9):1042–1048PubMedPubMedCentralCrossRef Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ et al (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 22(9):1042–1048PubMedPubMedCentralCrossRef
27.
go back to reference Zhang H, He Y, Wang J-X, Chen M-H, Xu J-J, Jiang M-H et al (2020) miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol 29:101402PubMedCrossRef Zhang H, He Y, Wang J-X, Chen M-H, Xu J-J, Jiang M-H et al (2020) miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol 29:101402PubMedCrossRef
28.
go back to reference Liu M-r, Zhu W-t, Pei D-s (2021) System Xc−: a key regulatory target of ferroptosis in cancer. Investig New Drugs 39(4):1123–1131CrossRef Liu M-r, Zhu W-t, Pei D-s (2021) System Xc−: a key regulatory target of ferroptosis in cancer. Investig New Drugs 39(4):1123–1131CrossRef
30.
go back to reference Wang L, Liu Y, Du T, Yang H, Lei L, Guo M et al (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ 27(2):662–675PubMedCrossRef Wang L, Liu Y, Du T, Yang H, Lei L, Guo M et al (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ 27(2):662–675PubMedCrossRef
31.
go back to reference Sun L, Dong H, Zhang W, Wang N, Ni N, Bai X et al (2021) Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. DNA Cell Biol 40(2):172–183PubMedCrossRef Sun L, Dong H, Zhang W, Wang N, Ni N, Bai X et al (2021) Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. DNA Cell Biol 40(2):172–183PubMedCrossRef
32.
go back to reference Delgir S, Bastami M, Ilkhani K, Safi A, Seif F, Alivand MR (2021) The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer. Mutat Res Rev Mutat Res 787:108366PubMedCrossRef Delgir S, Bastami M, Ilkhani K, Safi A, Seif F, Alivand MR (2021) The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer. Mutat Res Rev Mutat Res 787:108366PubMedCrossRef
33.
go back to reference Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci 107(16):7455–7460PubMedPubMedCentralCrossRef Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci 107(16):7455–7460PubMedPubMedCentralCrossRef
34.
go back to reference Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M et al (2018) RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol 9:1371PubMedPubMedCentralCrossRef Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M et al (2018) RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol 9:1371PubMedPubMedCentralCrossRef
35.
go back to reference Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331PubMedPubMedCentralCrossRef Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331PubMedPubMedCentralCrossRef
36.
go back to reference Nikolic D, Banach M, Chianetta R, Luzzu LM, Pantea Stoian A, Diaconu CC et al (2020) An overview of statin-induced myopathy and perspectives for the future. Expert Opin Drug Saf 19(5):601–615PubMedCrossRef Nikolic D, Banach M, Chianetta R, Luzzu LM, Pantea Stoian A, Diaconu CC et al (2020) An overview of statin-induced myopathy and perspectives for the future. Expert Opin Drug Saf 19(5):601–615PubMedCrossRef
37.
go back to reference Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692PubMedPubMedCentralCrossRef Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692PubMedPubMedCentralCrossRef
39.
40.
go back to reference Campbell MR, Karaca M, Adamski KN, Chorley BN, Wang X, Bell DA (2013) Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxid Med Cel Longev 2013:1–12CrossRef Campbell MR, Karaca M, Adamski KN, Chorley BN, Wang X, Bell DA (2013) Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxid Med Cel Longev 2013:1–12CrossRef
41.
go back to reference Hsieh C-H, Hsieh H-C, Shih F-S, Wang P-W, Yang L-X, Shieh D-B et al (2021) An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 11(14):7072PubMedPubMedCentralCrossRef Hsieh C-H, Hsieh H-C, Shih F-S, Wang P-W, Yang L-X, Shieh D-B et al (2021) An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 11(14):7072PubMedPubMedCentralCrossRef
42.
go back to reference Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F et al (2020) Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ 27(9):2635–2650PubMedPubMedCentralCrossRef Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F et al (2020) Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ 27(9):2635–2650PubMedPubMedCentralCrossRef
43.
go back to reference Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D (2020) Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol 27(4):420–435PubMedPubMedCentralCrossRef Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D (2020) Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol 27(4):420–435PubMedPubMedCentralCrossRef
44.
go back to reference Ryu M-S, Duck KA, Philpott CC (2018) Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells. Blood Cells Mol Dis 69:75–81PubMedCrossRef Ryu M-S, Duck KA, Philpott CC (2018) Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells. Blood Cells Mol Dis 69:75–81PubMedCrossRef
45.
go back to reference Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100PubMedCrossRef Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100PubMedCrossRef
46.
go back to reference Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508(4):997–1003PubMedCrossRef Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508(4):997–1003PubMedCrossRef
47.
go back to reference Han Y-C, Tang S-Q, Liu Y-T, Li A-M, Zhan M, Yang M et al (2021) AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis 12(10):1–12CrossRef Han Y-C, Tang S-Q, Liu Y-T, Li A-M, Zhan M, Yang M et al (2021) AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis 12(10):1–12CrossRef
48.
go back to reference Yang S, Sun D, Wang L, Wang X, Shi M, Jiang X et al (2019) The role of STAT3/mTOR-regulated autophagy in angiotensin II-induced senescence of human glomerular mesangial cells. Cell Signal 53:327–338PubMedCrossRef Yang S, Sun D, Wang L, Wang X, Shi M, Jiang X et al (2019) The role of STAT3/mTOR-regulated autophagy in angiotensin II-induced senescence of human glomerular mesangial cells. Cell Signal 53:327–338PubMedCrossRef
49.
go back to reference Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503(3):1550–1556PubMedCrossRef Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503(3):1550–1556PubMedCrossRef
50.
go back to reference Liu J, Yang M, Kang R, Klionsky DJ, Tang D (2019) Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy 15(11):2033–2035PubMedPubMedCentralCrossRef Liu J, Yang M, Kang R, Klionsky DJ, Tang D (2019) Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy 15(11):2033–2035PubMedPubMedCentralCrossRef
51.
go back to reference Qiao L, Ma J, Zhang Z, Sui W, Zhai C, Xu D et al (2021) Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circ Res 129(12):1141–1157PubMedPubMedCentralCrossRef Qiao L, Ma J, Zhang Z, Sui W, Zhai C, Xu D et al (2021) Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circ Res 129(12):1141–1157PubMedPubMedCentralCrossRef
52.
go back to reference Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radical Biol Med 131:356–369CrossRef Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radical Biol Med 131:356–369CrossRef
53.
go back to reference Wang H, Liu C, Zhao Y, Gao G (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol 99(1):151058PubMedCrossRef Wang H, Liu C, Zhao Y, Gao G (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol 99(1):151058PubMedCrossRef
55.
go back to reference Swaminathan S (2018) Iron homeostasis pathways as therapeutic targets in acute kidney injury. Nephron 140(2):156–159PubMedCrossRef Swaminathan S (2018) Iron homeostasis pathways as therapeutic targets in acute kidney injury. Nephron 140(2):156–159PubMedCrossRef
56.
go back to reference Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D (2021) Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Dig Dis Sci 66(2):483–492PubMedCrossRef Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D (2021) Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Dig Dis Sci 66(2):483–492PubMedCrossRef
57.
go back to reference Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T et al (2021) Involvement of GPX4 in irisin’s protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol 236(2):931–945PubMedCrossRef Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T et al (2021) Involvement of GPX4 in irisin’s protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol 236(2):931–945PubMedCrossRef
58.
go back to reference Wang X, Zheng X, Zhang J, Zhao S, Wang Z, Wang F et al (2018) Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 315(4):F1042–F1057PubMedPubMedCentralCrossRef Wang X, Zheng X, Zhang J, Zhao S, Wang Z, Wang F et al (2018) Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 315(4):F1042–F1057PubMedPubMedCentralCrossRef
59.
go back to reference Leaf DE, Rajapurkar M, Lele SS, Mukhopadhyay B, Boerger EA, Mc Causland FR et al (2019) Iron, hepcidin, and death in human AKI. J Am Soc Nephrol 30(3):493–504PubMedPubMedCentralCrossRef Leaf DE, Rajapurkar M, Lele SS, Mukhopadhyay B, Boerger EA, Mc Causland FR et al (2019) Iron, hepcidin, and death in human AKI. J Am Soc Nephrol 30(3):493–504PubMedPubMedCentralCrossRef
60.
go back to reference Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W et al (2022) Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 131:155194PubMedCrossRef Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W et al (2022) Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 131:155194PubMedCrossRef
61.
go back to reference Van Driest SL, Jooste EH, Shi Y, Choi L, Darghosian L, Hill KD et al (2018) Association between early postoperative acetaminophen exposure and acute kidney injury in pediatric patients undergoing cardiac surgery. JAMA Pediatr 172(7):655–663PubMedPubMedCentralCrossRef Van Driest SL, Jooste EH, Shi Y, Choi L, Darghosian L, Hill KD et al (2018) Association between early postoperative acetaminophen exposure and acute kidney injury in pediatric patients undergoing cardiac surgery. JAMA Pediatr 172(7):655–663PubMedPubMedCentralCrossRef
62.
go back to reference Proneth B, Conrad M (2019) Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 26(1):14–24PubMedCrossRef Proneth B, Conrad M (2019) Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 26(1):14–24PubMedCrossRef
63.
go back to reference Giuliani KT, Grivei A, Nag P, Wang X, Rist M, Kildey K et al (2022) Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c+ dendritic cells. Cell Death Dis 13(8):739PubMedPubMedCentralCrossRef Giuliani KT, Grivei A, Nag P, Wang X, Rist M, Kildey K et al (2022) Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c+ dendritic cells. Cell Death Dis 13(8):739PubMedPubMedCentralCrossRef
64.
go back to reference Kang H, Han M, Xue J, Baek Y, Chang J, Hu S et al (2019) Renal clearable nanochelators for iron overload therapy. Nat Commun 10(1):1–11CrossRef Kang H, Han M, Xue J, Baek Y, Chang J, Hu S et al (2019) Renal clearable nanochelators for iron overload therapy. Nat Commun 10(1):1–11CrossRef
65.
go back to reference Balzer MS, Doke T, Yang Y-W, Aldridge DL, Hu H, Mai H et al (2022) Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat Commun 13(1):4018PubMedPubMedCentralCrossRef Balzer MS, Doke T, Yang Y-W, Aldridge DL, Hu H, Mai H et al (2022) Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat Commun 13(1):4018PubMedPubMedCentralCrossRef
66.
go back to reference Kim S, Kang S-W, Joo J, Han SH, Shin H, Nam BY et al (2021) Correction: Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis 12(4):1–1CrossRef Kim S, Kang S-W, Joo J, Han SH, Shin H, Nam BY et al (2021) Correction: Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis 12(4):1–1CrossRef
67.
go back to reference Linehan WM, Ricketts CJ (2019) The cancer genome atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol 16(9):539–552PubMedCrossRef Linehan WM, Ricketts CJ (2019) The cancer genome atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol 16(9):539–552PubMedCrossRef
69.
go back to reference Stockwell BR (2018) Ferroptosis: death by lipid peroxidation. Free Radical Biol Med 120:S7CrossRef Stockwell BR (2018) Ferroptosis: death by lipid peroxidation. Free Radical Biol Med 120:S7CrossRef
70.
go back to reference Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD et al (2017) Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol 28(1):218–229PubMedCrossRef Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD et al (2017) Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol 28(1):218–229PubMedCrossRef
71.
go back to reference Wenzel SE, Tyurina YY, Zhao J, Croix CMS, Dar HH, Mao G et al (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628–413.e26PubMedPubMedCentralCrossRef Wenzel SE, Tyurina YY, Zhao J, Croix CMS, Dar HH, Mao G et al (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628–413.e26PubMedPubMedCentralCrossRef
72.
go back to reference Deng F, Sharma I, Dai Y, Yang M, Kanwar YS (2019) Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J Clin Investig 129(11):5033–5049PubMedPubMedCentralCrossRef Deng F, Sharma I, Dai Y, Yang M, Kanwar YS (2019) Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J Clin Investig 129(11):5033–5049PubMedPubMedCentralCrossRef
73.
go back to reference Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C et al (2019) Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J 33(8):8961–8975PubMedCrossRef Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C et al (2019) Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J 33(8):8961–8975PubMedCrossRef
74.
go back to reference Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F et al (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 111(47):16836–16841PubMedPubMedCentralCrossRef Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F et al (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 111(47):16836–16841PubMedPubMedCentralCrossRef
75.
go back to reference Dong X-Q, Chu L-K, Cao X, Xiong Q-W, Mao Y-M, Chen C-H et al (2023) Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis. Redox Rep 28(1):2152607PubMedPubMedCentralCrossRef Dong X-Q, Chu L-K, Cao X, Xiong Q-W, Mao Y-M, Chen C-H et al (2023) Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis. Redox Rep 28(1):2152607PubMedPubMedCentralCrossRef
76.
go back to reference Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W et al (2021) Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis 12(9):1–10PubMedPubMedCentralCrossRef Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W et al (2021) Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis 12(9):1–10PubMedPubMedCentralCrossRef
77.
go back to reference Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C et al (2020) Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol 888:173574PubMedCrossRef Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C et al (2020) Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol 888:173574PubMedCrossRef
78.
go back to reference Deng H-F, Yue L-X, Wang N-N, Zhou Y-Q, Zhou W, Liu X et al (2021) Mitochondrial iron overload-mediated inhibition of Nrf2-HO-1/GPX4 assisted ALI-induced nephrotoxicity. Front Pharmacol 11:624529PubMedPubMedCentralCrossRef Deng H-F, Yue L-X, Wang N-N, Zhou Y-Q, Zhou W, Liu X et al (2021) Mitochondrial iron overload-mediated inhibition of Nrf2-HO-1/GPX4 assisted ALI-induced nephrotoxicity. Front Pharmacol 11:624529PubMedPubMedCentralCrossRef
79.
go back to reference Abdel-Daim MM, Aleya L, El-Bialy BE, Abushouk AI, Alkahtani S, Alarifi S et al (2019) The ameliorative effects of ceftriaxone and vitamin E against cisplatin-induced nephrotoxicity. Environ Sci Pollut Res Int 26(15):15248–15254PubMedCrossRef Abdel-Daim MM, Aleya L, El-Bialy BE, Abushouk AI, Alkahtani S, Alarifi S et al (2019) The ameliorative effects of ceftriaxone and vitamin E against cisplatin-induced nephrotoxicity. Environ Sci Pollut Res Int 26(15):15248–15254PubMedCrossRef
Metadata
Title
The mechanisms of ferroptosis in the pathogenesis of kidney diseases
Authors
Jia Liu
Jianheng Chen
Jie Lv
Yuhang Gong
Jie Song
Publication date
04-05-2024
Publisher
Springer International Publishing
Published in
Journal of Nephrology
Print ISSN: 1121-8428
Electronic ISSN: 1724-6059
DOI
https://doi.org/10.1007/s40620-024-01927-6
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Webinar | 06-02-2024 | 20:00 (CET)

Mastering chronic pancreatitis pain: A multidisciplinary approach and practical solutions

Severe pain is the most common symptom of chronic pancreatitis. In this webinar, experts share the latest insights in pain management for chronic pancreatitis patients. Experts from a range of disciplines discuss pertinent cases and provide practical suggestions for use within clinical practice.

Sponsored by: Viatris

Developed by: Springer Healthcare