Skip to main content
Top
Published in:

Open Access 01-10-2024 | Actinic Keratosis | Original Paper

Interobserver agreement on line-field confocal optical coherence tomography image markers in keratinocyte carcinomas and precursor lesions

Authors: Kevin Jacobsen, Vinzent Kevin Ortner, Emily Wenande, Gabriella Fredman, Gavrielle R. Untracht, Tom Wolswijk, Emmy Cruts, Klara Mosterd, Kari Nielsen, Peter Alshede Philipsen, Stine Regin Wiegell, Merete Haedersdal

Published in: Archives of Dermatological Research | Issue 8/2024

Login to get access

Abstract

Line-field confocal optical coherence tomography (LC-OCT) is a new technology for skin cancer diagnostics. However, the interobserver agreement (IOA) of known image markers of keratinocyte carcinomas (KC), including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), as well as precursors, SCC in situ (CIS) and actinic keratosis (AK), remains unexplored. This study determined IOA on the presence or absence of 10 key LC-OCT image markers of KC and precursors, among evaluators new to LC-OCT with different levels of dermatologic imaging experience. Secondly, the frequency and association between reported image markers and lesion types, was determined. Six evaluators blinded to histopathologic diagnoses, assessed 75 LC-OCT images of KC (21 SCC; 21 BCC), CIS (12), and AK (21). For each image, evaluators independently reported the presence or absence of 10 predefined key image markers of KCs and precursors described in an LC-OCT literature review. Evaluators were stratified by experience-level as experienced (3) or novices (3) based on previous OCT and reflectance confocal microscopy usage. IOA was tested for all groups, using Conger’s kappa coefficient (κ). The frequency of reported image marker and their association with lesion-types, were calculated as proportions and odds ratios (OR), respectively. Overall IOA was highest for the image markers lobules (κ = 0.68, 95% confidence interval (CI) 0.57;0.78) and clefting (κ = 0.63, CI 0.52;0.74), typically seen in BCC (94%;OR 143.2 and 158.7, respectively, p < 0.001), followed by severe dysplasia (κ = 0.42, CI 0.31;0.53), observed primarily in CIS (79%;OR 7.1, p < 0.001). The remaining seven image-markers had lower IOA (κ = 0.06–0.32) and were more evenly observed across lesion types. The lowest IOA was noted for a well-defined (κ = 0.07, CI 0;0.15) and interrupted dermal-epidermal junction (DEJ) (κ = 0.06, CI -0.002;0.13). IOA was higher for all image markers among experienced evaluators versus novices. This study shows varying IOA for 10 key image markers of KC and precursors in LC-OCT images among evaluators new to the technology. IOA was highest for the assessments of lobules, clefting, and severe dysplasia while lowest for the assessment of the DEJ integrity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Perez M, Abisaad JA, Rojas KD, Marchetti MA, Jaimes N (2022) Skin cancer: primary, secondary, and tertiary prevention. Part I. J Am Acad Dermatol 87(2):255–268CrossRefPubMed Perez M, Abisaad JA, Rojas KD, Marchetti MA, Jaimes N (2022) Skin cancer: primary, secondary, and tertiary prevention. Part I. J Am Acad Dermatol 87(2):255–268CrossRefPubMed
2.
go back to reference Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: Incidence. J Am Acad Dermatol. ;30(5, Part 1):774–8 Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: Incidence. J Am Acad Dermatol. ;30(5, Part 1):774–8
3.
go back to reference Pandeya N, Olsen CM, Whiteman DC (2017) The incidence and multiplicity rates of keratinocyte cancers in Australia. Med J Aust 207(8):339–343CrossRefPubMed Pandeya N, Olsen CM, Whiteman DC (2017) The incidence and multiplicity rates of keratinocyte cancers in Australia. Med J Aust 207(8):339–343CrossRefPubMed
4.
go back to reference Lomas A, Leonardi-Bee J, Bath-Hextall F (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRefPubMed Lomas A, Leonardi-Bee J, Bath-Hextall F (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRefPubMed
5.
go back to reference Wenande E, Togsverd-Bo K, Hastrup A, Lei U, Philipsen PA, Haedersdal M (2023) Skin Cancer Development is strongly Associated with Actinic Keratosis in Solid Organ Transplant recipients: a Danish cohort study. Dermatology 239(3):393–402CrossRefPubMed Wenande E, Togsverd-Bo K, Hastrup A, Lei U, Philipsen PA, Haedersdal M (2023) Skin Cancer Development is strongly Associated with Actinic Keratosis in Solid Organ Transplant recipients: a Danish cohort study. Dermatology 239(3):393–402CrossRefPubMed
6.
go back to reference Pomerantz R, Zell D, McKenzie G, Siegel DM (2011) Optical coherence tomography used as a modality to delineate basal cell Carcinoma prior to Mohs Micrographic surgery. Case Rep Dermatol 3(3):212–218CrossRefPubMedPubMedCentral Pomerantz R, Zell D, McKenzie G, Siegel DM (2011) Optical coherence tomography used as a modality to delineate basal cell Carcinoma prior to Mohs Micrographic surgery. Case Rep Dermatol 3(3):212–218CrossRefPubMedPubMedCentral
7.
go back to reference Forsea AM, Carstea EM, Ghervase L, Giurcaneanu C, Pavelescu G (2010) Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study. J Med Life 3(4):381–389PubMedPubMedCentral Forsea AM, Carstea EM, Ghervase L, Giurcaneanu C, Pavelescu G (2010) Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study. J Med Life 3(4):381–389PubMedPubMedCentral
8.
go back to reference Rajadhyaksha M, González S, Zavislan JM, Rox Anderson R, Webb RH (1999) In vivo confocal scanning laser Microscopy of Human skin II: advances in Instrumentation and Comparison with Histology11The authors have declared conflict of interest. J Invest Dermatol 113(3):293–303CrossRefPubMed Rajadhyaksha M, González S, Zavislan JM, Rox Anderson R, Webb RH (1999) In vivo confocal scanning laser Microscopy of Human skin II: advances in Instrumentation and Comparison with Histology11The authors have declared conflict of interest. J Invest Dermatol 113(3):293–303CrossRefPubMed
9.
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (2015) Opt Coherence Tomography. ;12 Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (2015) Opt Coherence Tomography. ;12
10.
go back to reference Borsari S, Pampena R, Lallas A, Kyrgidis A, Moscarella E, Benati E et al (2016) Clinical indications for Use of Reflectance Confocal Microscopy for skin Cancer diagnosis. JAMA Dermatol 152(10):1093–1098CrossRefPubMed Borsari S, Pampena R, Lallas A, Kyrgidis A, Moscarella E, Benati E et al (2016) Clinical indications for Use of Reflectance Confocal Microscopy for skin Cancer diagnosis. JAMA Dermatol 152(10):1093–1098CrossRefPubMed
11.
go back to reference Banzhaf CA, Themstrup L, Ring HC, Mogensen M, Jemec GBE (2014) Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy. Skin Res Technol 20(2):170–176CrossRefPubMed Banzhaf CA, Themstrup L, Ring HC, Mogensen M, Jemec GBE (2014) Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy. Skin Res Technol 20(2):170–176CrossRefPubMed
12.
go back to reference Ahlgrimm-Siess V, Horn M, Koller S, Ludwig R, Gerger A, Hofmann-Wellenhof R (2009) Monitoring efficacy of cryotherapy for superficial basal cell carcinomas with in vivo reflectance confocal microscopy: a preliminary study. J Dermatol Sci 53(1):60–64CrossRefPubMed Ahlgrimm-Siess V, Horn M, Koller S, Ludwig R, Gerger A, Hofmann-Wellenhof R (2009) Monitoring efficacy of cryotherapy for superficial basal cell carcinomas with in vivo reflectance confocal microscopy: a preliminary study. J Dermatol Sci 53(1):60–64CrossRefPubMed
13.
go back to reference Tannous Z, Torres A, González S (2003) In vivo real-time confocal reflectance Microscopy: a Noninvasive Guide for Mohs Micrographic surgery facilitated by Aluminum Chloride, an excellent contrast enhancer. Dermatol Surg 29(8):839–846PubMed Tannous Z, Torres A, González S (2003) In vivo real-time confocal reflectance Microscopy: a Noninvasive Guide for Mohs Micrographic surgery facilitated by Aluminum Chloride, an excellent contrast enhancer. Dermatol Surg 29(8):839–846PubMed
14.
go back to reference Dubois A, Levecq O, Azimani H, Siret D, Barut A, Suppa M et al (2018) Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J Biomed Opt 23(10):106007–106007CrossRef Dubois A, Levecq O, Azimani H, Siret D, Barut A, Suppa M et al (2018) Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J Biomed Opt 23(10):106007–106007CrossRef
15.
go back to reference Latriglia F, Ogien J, Tavernier C, Fischman S, Suppa M, Perrot JL et al (2023) Line-field confocal optical coherence tomography (LC-OCT) for skin imaging in Dermatology. Life 13(12):2268CrossRefPubMedPubMedCentral Latriglia F, Ogien J, Tavernier C, Fischman S, Suppa M, Perrot JL et al (2023) Line-field confocal optical coherence tomography (LC-OCT) for skin imaging in Dermatology. Life 13(12):2268CrossRefPubMedPubMedCentral
16.
go back to reference Ogien J, Tavernier C, Fischman S, Dubois A (2023) Line-field confocal optical coherence tomography (LC-OCT): principles and practical use. Ital J Dermatol Venereol 158(3):171–179CrossRef Ogien J, Tavernier C, Fischman S, Dubois A (2023) Line-field confocal optical coherence tomography (LC-OCT): principles and practical use. Ital J Dermatol Venereol 158(3):171–179CrossRef
17.
go back to reference Cinotti E, Brunetti T, Cartocci A, Tognetti L, Suppa M, Malvehy J et al (2023) Diagnostic accuracy of line-field Confocal Optical Coherence Tomography for the diagnosis of skin carcinomas. Diagnostics 13(3):361CrossRefPubMedPubMedCentral Cinotti E, Brunetti T, Cartocci A, Tognetti L, Suppa M, Malvehy J et al (2023) Diagnostic accuracy of line-field Confocal Optical Coherence Tomography for the diagnosis of skin carcinomas. Diagnostics 13(3):361CrossRefPubMedPubMedCentral
18.
go back to reference Cinotti E, Bertello M, Dragotto M, Cartocci A, Tognetti L, Cappilli S et al (2023) Comparison of reflectance confocal microscopy and line-field optical coherence tomography for the identification of basal cell carcinoma. J Eur Acad Dermatol Venereol 37(9):e1147–e1150CrossRefPubMed Cinotti E, Bertello M, Dragotto M, Cartocci A, Tognetti L, Cappilli S et al (2023) Comparison of reflectance confocal microscopy and line-field optical coherence tomography for the identification of basal cell carcinoma. J Eur Acad Dermatol Venereol 37(9):e1147–e1150CrossRefPubMed
19.
go back to reference Razi S, Khan S, Truong TM, Zia S, Khan FF, Uddin KM et al (2023) Cutaneous squamous cell carcinoma: an Up-to-date Comprehensive Review with a Focus on Contemporary Optical Imaging Diagnostic Modalities. Dermato 3(2):161–181CrossRef Razi S, Khan S, Truong TM, Zia S, Khan FF, Uddin KM et al (2023) Cutaneous squamous cell carcinoma: an Up-to-date Comprehensive Review with a Focus on Contemporary Optical Imaging Diagnostic Modalities. Dermato 3(2):161–181CrossRef
20.
go back to reference Ruini C, Schuh S, Gust C, Hartmann D, French LE, Sattler EC et al (2021) In-Vivo LC-OCT evaluation of the Downward Proliferation Pattern of keratinocytes in Actinic Keratosis in comparison with histology: first impressions from a pilot study. Cancers 13(12):2856CrossRefPubMedPubMedCentral Ruini C, Schuh S, Gust C, Hartmann D, French LE, Sattler EC et al (2021) In-Vivo LC-OCT evaluation of the Downward Proliferation Pattern of keratinocytes in Actinic Keratosis in comparison with histology: first impressions from a pilot study. Cancers 13(12):2856CrossRefPubMedPubMedCentral
21.
go back to reference Ruini C, Schuh S, Gust C, Kendziora B, Frommherz L, French Le et al (2021) Line-field confocal optical coherence tomography for the in vivo real-time diagnosis of different stages of keratinocyte skin cancer: a preliminary study. J Eur Acad Dermatol Venereol 35(12):2388–2397CrossRefPubMed Ruini C, Schuh S, Gust C, Kendziora B, Frommherz L, French Le et al (2021) Line-field confocal optical coherence tomography for the in vivo real-time diagnosis of different stages of keratinocyte skin cancer: a preliminary study. J Eur Acad Dermatol Venereol 35(12):2388–2397CrossRefPubMed
22.
go back to reference Cinotti E, Tognetti L, Cartocci A, Lamberti A, Gherbassi S, Orte Cano C et al (2021) Line-field confocal optical coherence tomography for actinic keratosis and squamous cell carcinoma: a descriptive study. Clin Exp Dermatol Cinotti E, Tognetti L, Cartocci A, Lamberti A, Gherbassi S, Orte Cano C et al (2021) Line-field confocal optical coherence tomography for actinic keratosis and squamous cell carcinoma: a descriptive study. Clin Exp Dermatol
23.
go back to reference Suppa M, Fontaine M, Dejonckheere G, Cinotti E, Yélamos O, Diet G et al (2021) Line-field confocal optical coherence tomography of basal cell carcinoma: a descriptive study. J Eur Acad Dermatol Venereol 35(5):1099–1110CrossRefPubMed Suppa M, Fontaine M, Dejonckheere G, Cinotti E, Yélamos O, Diet G et al (2021) Line-field confocal optical coherence tomography of basal cell carcinoma: a descriptive study. J Eur Acad Dermatol Venereol 35(5):1099–1110CrossRefPubMed
24.
go back to reference Gust C, Schuh S, Welzel J, Daxenberger F, Hartmann D, French LE et al (2022) Line-field Confocal Optical Coherence Tomography increases the diagnostic accuracy and confidence for basal cell carcinoma in Equivocal lesions: a prospective study. Cancers 14(4):1082CrossRefPubMedPubMedCentral Gust C, Schuh S, Welzel J, Daxenberger F, Hartmann D, French LE et al (2022) Line-field Confocal Optical Coherence Tomography increases the diagnostic accuracy and confidence for basal cell carcinoma in Equivocal lesions: a prospective study. Cancers 14(4):1082CrossRefPubMedPubMedCentral
25.
go back to reference Ruini C, Schuh S, Gust C, Kendziora B, Frommherz L, French LE et al (2021) Line-field optical coherence tomography: in vivo diagnosis of basal cell carcinoma subtypes compared with histopathology. Clin Exp Dermatol 46(8):1471–1481CrossRefPubMed Ruini C, Schuh S, Gust C, Kendziora B, Frommherz L, French LE et al (2021) Line-field optical coherence tomography: in vivo diagnosis of basal cell carcinoma subtypes compared with histopathology. Clin Exp Dermatol 46(8):1471–1481CrossRefPubMed
26.
go back to reference Donelli C, Suppa M, Tognetti L, Perrot JL, Calabrese L, Pérez-Anker J et al (2023) Line-field Confocal Optical Coherence Tomography for the diagnosis of skin carcinomas: real-Life Data over three years. Curr Oncol 30(10):8853–8864CrossRefPubMedPubMedCentral Donelli C, Suppa M, Tognetti L, Perrot JL, Calabrese L, Pérez-Anker J et al (2023) Line-field Confocal Optical Coherence Tomography for the diagnosis of skin carcinomas: real-Life Data over three years. Curr Oncol 30(10):8853–8864CrossRefPubMedPubMedCentral
27.
go back to reference Soglia S, Pérez-Anker J, Lobos Guede N, Giavedoni P, Puig S, Malvehy J (2022) Diagnostics using Non-invasive technologies in Dermatological Oncology. Cancers 14(23):5886CrossRefPubMedPubMedCentral Soglia S, Pérez-Anker J, Lobos Guede N, Giavedoni P, Puig S, Malvehy J (2022) Diagnostics using Non-invasive technologies in Dermatological Oncology. Cancers 14(23):5886CrossRefPubMedPubMedCentral
28.
go back to reference Jacobsen K, Ortner VK, Wenande E, Sahu A, Paasch U, Haedersdal M (2024) Line-field confocal optical coherence tomography in dermato-oncology: a literature review towards harmonized histopathology-integrated terminology. Exp Dermatol 33(4):e15057CrossRefPubMed Jacobsen K, Ortner VK, Wenande E, Sahu A, Paasch U, Haedersdal M (2024) Line-field confocal optical coherence tomography in dermato-oncology: a literature review towards harmonized histopathology-integrated terminology. Exp Dermatol 33(4):e15057CrossRefPubMed
29.
go back to reference van Loo E, Sinx KAE, Welzel J, Schuh S, Kelleners-Smeets NWJ, Mosterd K et al (2020) Cumulative Sum Analysis for the learning curve of Optical Coherence Tomography assisted diagnosis of basal cell carcinoma. Acta Derm Venereol 100(19):adv00343CrossRefPubMed van Loo E, Sinx KAE, Welzel J, Schuh S, Kelleners-Smeets NWJ, Mosterd K et al (2020) Cumulative Sum Analysis for the learning curve of Optical Coherence Tomography assisted diagnosis of basal cell carcinoma. Acta Derm Venereol 100(19):adv00343CrossRefPubMed
30.
go back to reference Conger AJ (1980) Integration and generalization of kappas for multiple raters. Psychol Bull 88(2):322–328CrossRef Conger AJ (1980) Integration and generalization of kappas for multiple raters. Psychol Bull 88(2):322–328CrossRef
31.
go back to reference Landis JR, Koch GG (1977) The measurement of Observer Agreement for Categorical Data. Biometrics 33(1):159CrossRefPubMed Landis JR, Koch GG (1977) The measurement of Observer Agreement for Categorical Data. Biometrics 33(1):159CrossRefPubMed
32.
go back to reference Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 43(6):551–558CrossRefPubMed Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 43(6):551–558CrossRefPubMed
33.
go back to reference Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 43(6):543–549CrossRefPubMed Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 43(6):543–549CrossRefPubMed
35.
go back to reference Gupta K, Attri J, Singh A, Kaur H, Kaur G (2016) Basic concepts for sample size calculation: critical step for any clinical trials! Saudi J Anaesth 10(3):328–331CrossRefPubMedPubMedCentral Gupta K, Attri J, Singh A, Kaur H, Kaur G (2016) Basic concepts for sample size calculation: critical step for any clinical trials! Saudi J Anaesth 10(3):328–331CrossRefPubMedPubMedCentral
36.
go back to reference Serdar CC, Cihan M, Yücel D, Serdar MA (2021) Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med 31(1):010502CrossRef Serdar CC, Cihan M, Yücel D, Serdar MA (2021) Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med 31(1):010502CrossRef
37.
go back to reference Vanbelle S (2019) Asymptotic variability of (multilevel) multirater kappa coefficients. Stat Methods Med Res 28(10–11):3012–3026CrossRefPubMed Vanbelle S (2019) Asymptotic variability of (multilevel) multirater kappa coefficients. Stat Methods Med Res 28(10–11):3012–3026CrossRefPubMed
39.
go back to reference Ruini C, Schuh S, Sattler E, Welzel J (2021) Line-field confocal optical coherence tomography—practical applications in dermatology and comparison with established imaging methods. Skin Res Technol 27(3):340–352CrossRefPubMed Ruini C, Schuh S, Sattler E, Welzel J (2021) Line-field confocal optical coherence tomography—practical applications in dermatology and comparison with established imaging methods. Skin Res Technol 27(3):340–352CrossRefPubMed
40.
go back to reference Fischman S, Pérez-Anker J, Tognetti L, Di Naro A, Suppa M, Cinotti E et al (2022) Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning. Sci Rep 12(1):481CrossRefPubMedPubMedCentral Fischman S, Pérez-Anker J, Tognetti L, Di Naro A, Suppa M, Cinotti E et al (2022) Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning. Sci Rep 12(1):481CrossRefPubMedPubMedCentral
41.
go back to reference Lenoir C, Cinotti E, Tognetti L, Orte Cano C, Diet G, Miyamoto M et al (2021) Line-field confocal optical coherence tomography of actinic keratosis: a case series. J Eur Acad Dermatol Venereol 35(12):e900–e902CrossRefPubMed Lenoir C, Cinotti E, Tognetti L, Orte Cano C, Diet G, Miyamoto M et al (2021) Line-field confocal optical coherence tomography of actinic keratosis: a case series. J Eur Acad Dermatol Venereol 35(12):e900–e902CrossRefPubMed
42.
go back to reference Carpentier M, Combescure C, Merlini L, Perneger TV (2017) Kappa statistic to measure agreement beyond chance in free-response assessments. BMC Med Res Methodol 17:62CrossRefPubMedPubMedCentral Carpentier M, Combescure C, Merlini L, Perneger TV (2017) Kappa statistic to measure agreement beyond chance in free-response assessments. BMC Med Res Methodol 17:62CrossRefPubMedPubMedCentral
43.
go back to reference Cappilli S, Cinotti E, Lenoir C, Tognetti L, Perez-Anker J, Rubegni P et al (2022) Line-field confocal optical coherence tomography of basosquamous carcinoma: a case series with histopathological correlation. J Eur Acad Dermatol Venereol 36(8):1214–1218CrossRefPubMed Cappilli S, Cinotti E, Lenoir C, Tognetti L, Perez-Anker J, Rubegni P et al (2022) Line-field confocal optical coherence tomography of basosquamous carcinoma: a case series with histopathological correlation. J Eur Acad Dermatol Venereol 36(8):1214–1218CrossRefPubMed
44.
go back to reference McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 22(3):276–282CrossRef McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 22(3):276–282CrossRef
Metadata
Title
Interobserver agreement on line-field confocal optical coherence tomography image markers in keratinocyte carcinomas and precursor lesions
Authors
Kevin Jacobsen
Vinzent Kevin Ortner
Emily Wenande
Gabriella Fredman
Gavrielle R. Untracht
Tom Wolswijk
Emmy Cruts
Klara Mosterd
Kari Nielsen
Peter Alshede Philipsen
Stine Regin Wiegell
Merete Haedersdal
Publication date
01-10-2024
Publisher
Springer Berlin Heidelberg
Published in
Archives of Dermatological Research / Issue 8/2024
Print ISSN: 0340-3696
Electronic ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-024-03344-y

Other articles of this Issue 8/2024

Archives of Dermatological Research 8/2024 Go to the issue