Skip to main content
Top
Published in:

01-04-2023 | Research

ABCD_Harmonizer: An Open-source Tool for Mapping and Controlling for Scanner Induced Variance in the Adolescent Brain Cognitive Development Study

Authors: Jonathan A. Dudley, Thomas C. Maloney, John O. Simon, Gowtham Atluri, Sarah L. Karalunas, Mekibib Altaye, Jeffery N. Epstein, Leanne Tamm

Published in: Neuroinformatics | Issue 2/2023

Login to get access

Abstract

Data from multisite magnetic resonance imaging (MRI) studies contain variance attributable to the scanner that can reduce statistical power and potentially bias results if not appropriately managed. The Adolescent Cognitive Brain Development (ABCD) study is an ongoing, longitudinal neuroimaging study acquiring data from over 11,000 children starting at 9–10 years of age. These scans are acquired on 29 different scanners of 5 different model types manufactured by 3 different vendors. Publicly available data from the ABCD study include structural MRI (sMRI) measures such as cortical thickness and diffusion MRI (dMRI) measures such as fractional anisotropy. In this work, we 1) quantify the variance attributable to scanner effects in the sMRI and dMRI datasets, 2) demonstrate the effectiveness of the data harmonization approach called ComBat to address scanner effects, and 3) present a simple, open-source tool for investigators to harmonize image features from the ABCD study. Scanner-induced variance was present in every image feature and varied in magnitude by feature type and brain location. For almost all features, scanner variance exceeded variability attributable to age and sex. ComBat harmonization was shown to effectively remove scanner induced variance from all image features while preserving the biological variability in the data. Moreover, we show that for studies examining relatively small subsamples of the ABCD dataset, the use of ComBat harmonized data provides more accurate estimates of effect sizes compared to controlling for scanner effects using ordinary least squares regression.
Appendix
Available only for authorised users
Literature
go back to reference Beer, J. C., Tustison, N. J., Cook, P. A., Davatzikos, C., Sheline, Y. I., Shinohara, R. T., Linn, K. A., & Alzheimer's Disease Neroimaging Initiative. (2020). Longitudinal combat: A method for harmonizing longitudinal multi-scanner imaging data. NeuroImage, 220, 117129.CrossRefPubMed Beer, J. C., Tustison, N. J., Cook, P. A., Davatzikos, C., Sheline, Y. I., Shinohara, R. T., Linn, K. A., & Alzheimer's Disease Neroimaging Initiative. (2020). Longitudinal combat: A method for harmonizing longitudinal multi-scanner imaging data. NeuroImage, 220, 117129.CrossRefPubMed
go back to reference Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., … Workgroup, A. I. A. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54.CrossRefPubMedPubMedCentral Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., … Workgroup, A. I. A. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54.CrossRefPubMedPubMedCentral
go back to reference Chen, J., Liu, J., Calhoun, V. D., Arias-Vasquez, A., Zwiers, M. P., Gupta, C. N., Franke, B., & Turner, J. A. (2014). Exploration of scanning effects in multi-site structural MRI studies. Journal of Neuroscience Methods, 230, 37–50.CrossRefPubMedPubMedCentral Chen, J., Liu, J., Calhoun, V. D., Arias-Vasquez, A., Zwiers, M. P., Gupta, C. N., Franke, B., & Turner, J. A. (2014). Exploration of scanning effects in multi-site structural MRI studies. Journal of Neuroscience Methods, 230, 37–50.CrossRefPubMedPubMedCentral
go back to reference Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.
go back to reference Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1–15.CrossRefPubMed Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1–15.CrossRefPubMed
go back to reference Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.CrossRefPubMedPubMedCentral Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.CrossRefPubMedPubMedCentral
go back to reference Fortin, J. P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., Adams, P., Cooper, C., Fava, M., McGrath, P. J., McInnis, M., Phillips, M. L., Trivedi, M. H., Weissman, M. M., & Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. NeuroImage, 167, 104–120.CrossRefPubMed Fortin, J. P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., Adams, P., Cooper, C., Fava, M., McGrath, P. J., McInnis, M., Phillips, M. L., Trivedi, M. H., Weissman, M. M., & Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. NeuroImage, 167, 104–120.CrossRefPubMed
go back to reference Fortin, J. P., Parker, D., Tunc, B., Watanabe, T., Elliott, M. A., Ruparel, K., Roalf, D. R., Satterthwaite, T. D., Gur, R. C., Gur, R. E., Schultz, R. T., Verma, R., & Shinohara, R. T. (2017). Harmonization of multi-site diffusion tensor imaging data. NeuroImage, 161, 149–170.CrossRefPubMed Fortin, J. P., Parker, D., Tunc, B., Watanabe, T., Elliott, M. A., Ruparel, K., Roalf, D. R., Satterthwaite, T. D., Gur, R. C., Gur, R. E., Schultz, R. T., Verma, R., & Shinohara, R. T. (2017). Harmonization of multi-site diffusion tensor imaging data. NeuroImage, 161, 149–170.CrossRefPubMed
go back to reference Hagler, D. J., Jr., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., Sutherland, M. T., Casey, B. J., Barch, D. M., Harms, M. P., Watts, R., Bjork, J. M., Garavan, H. P., Hilmer, L., Pung, C. J., Sicat, C. S., Kuperman, J., Bartsch, H., Xue, F., … Dale, A. M. (2019). Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage, 202, 116091.CrossRefPubMed Hagler, D. J., Jr., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., Sutherland, M. T., Casey, B. J., Barch, D. M., Harms, M. P., Watts, R., Bjork, J. M., Garavan, H. P., Hilmer, L., Pung, C. J., Sicat, C. S., Kuperman, J., Bartsch, H., Xue, F., … Dale, A. M. (2019). Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage, 202, 116091.CrossRefPubMed
go back to reference Hagler, D. J., Jr., Ahmadi, M. E., Kuperman, J., Holland, D., McDonald, C. R., Halgren, E., & Dale, A. M. (2009). Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy. Human Brain Mapping, 30, 1535–1547.CrossRefPubMed Hagler, D. J., Jr., Ahmadi, M. E., Kuperman, J., Holland, D., McDonald, C. R., Halgren, E., & Dale, A. M. (2009). Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy. Human Brain Mapping, 30, 1535–1547.CrossRefPubMed
go back to reference Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127.CrossRefPubMed Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127.CrossRefPubMed
go back to reference Nielson, D.M., Pereira, F., Zheng, C.Y., Migineishvili, N., Lee, J.A., Thomas, A.G., Bandettini, P.A. (2018). Detecting and harmonizing scanner differences in the ABCD study - annual release 1.0. bioRxiv, 309260. Nielson, D.M., Pereira, F., Zheng, C.Y., Migineishvili, N., Lee, J.A., Thomas, A.G., Bandettini, P.A. (2018). Detecting and harmonizing scanner differences in the ABCD study - annual release 1.0. bioRxiv, 309260.
go back to reference Nygaard, V., Rødland, E. A., & Hovig, E. (2016). Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics, 17, 29–39.CrossRefPubMed Nygaard, V., Rødland, E. A., & Hovig, E. (2016). Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics, 17, 29–39.CrossRefPubMed
go back to reference Pomponio, R., Erus, G., Habes, M., Doshi, J., Srinivasan, D., Mamourian, E., Bashyam, V., Nasrallah, I. M., Satterthwaite, T. D., Fan, Y., Launer, L. J., Masters, C. L., Maruff, P., Zhuo, C., Volzke, H., Johnson, S. C., Fripp, J., Koutsouleris, N., Wolf, D. H., … Davatzikos, C. (2020). Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage, 208, 116450.CrossRefPubMed Pomponio, R., Erus, G., Habes, M., Doshi, J., Srinivasan, D., Mamourian, E., Bashyam, V., Nasrallah, I. M., Satterthwaite, T. D., Fan, Y., Launer, L. J., Masters, C. L., Maruff, P., Zhuo, C., Volzke, H., Johnson, S. C., Fripp, J., Koutsouleris, N., Wolf, D. H., … Davatzikos, C. (2020). Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage, 208, 116450.CrossRefPubMed
go back to reference Takao, H., Hayashi, N., & Ohtomo, K. (2014). Effects of study design in multi-scanner voxel-based morphometry studies. NeuroImage, 84, 133–140.CrossRefPubMed Takao, H., Hayashi, N., & Ohtomo, K. (2014). Effects of study design in multi-scanner voxel-based morphometry studies. NeuroImage, 84, 133–140.CrossRefPubMed
go back to reference Yu, M., Linn, K. A., Cook, P. A., Phillips, M. L., McInnis, M., Fava, M., Trivedi, M. H., Weissman, M. M., Shinohara, R. T., & Sheline, Y. I. (2018). Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Human Brain Mapping, 39, 4213–4227.CrossRefPubMedPubMedCentral Yu, M., Linn, K. A., Cook, P. A., Phillips, M. L., McInnis, M., Fava, M., Trivedi, M. H., Weissman, M. M., Shinohara, R. T., & Sheline, Y. I. (2018). Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Human Brain Mapping, 39, 4213–4227.CrossRefPubMedPubMedCentral
Metadata
Title
ABCD_Harmonizer: An Open-source Tool for Mapping and Controlling for Scanner Induced Variance in the Adolescent Brain Cognitive Development Study
Authors
Jonathan A. Dudley
Thomas C. Maloney
John O. Simon
Gowtham Atluri
Sarah L. Karalunas
Mekibib Altaye
Jeffery N. Epstein
Leanne Tamm
Publication date
01-04-2023
Publisher
Springer US
Published in
Neuroinformatics / Issue 2/2023
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-023-09624-8

Other articles of this Issue 2/2023

Neuroinformatics 2/2023 Go to the issue

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more